積化和差公式

(18)

(19)

(20)

sinAcosB=(1/2)[sin(A+B)+sin(A-B)]

cosAcosB=(1/2)[cos(A+B)+cos(A-B)]

sinAsinB=(1/2)[cos(A+B)-cos(A-B)]

和差化積公式

(21)

(22)

(23)

(24)

sinx+siny=2sin[(x+y)/2]cos[(x-y)/2]

sinx-siny=2cos[(x+y)/2]sin[(x-y)/2]

cosx+cosy=2cos[(x+y)/2]cos[(x-y)/2]

cosx-cosy=-2sin[(x+y)/2]sin[(x-y)/2]

--------------------(18)--------------------

sin(A+B)+sin(A-B)

=[sinAcosB+cosAsinB]+[sinAcosB-cosAsinB]

=2sinAcosB

∴sinAcosB=(1/2)[sin(A+B)+sin(A-B)]

--------------------(19)--------------------

cos(A+B)+cos(A-B)

=[cosAcosB-sinAsinB]+[cosAcosB+sinAsinB]

=2cosAcosB

∴cosAcosB=(1/2)[cos(A+B)+cos(A-B)]

--------------------(20)--------------------

cos(A+B)-cos(A-B)

=[cosAcosB-sinAsinB]-[cosAcosB+sinAsinB]

=2sinAsinB

∴sinAsinB=(1/2)[cos(A+B)-cos(A-B)]

--------------------(21)--------------------

根據(1),代入A+B=x A-B=y,由此亦得出A=(x+y)/2 B=(x-y)/2

∴sinx+siny=2sin[(x+y)/2]cos[(x-y)/2]

--------------------(22)--------------------

根據(4),代入y=-y

sinx+sin(-y)=2sin{[x+(-y)]/2}cos{[x-(-y)]/2}

∴sinx-siny=2cos[(x+y)/2]sin[(x-y)/2]

--------------------(23)--------------------

根據(2),代入A+B=x A-B=y,由此亦得出A=(x+y)/2 B=(x-y)/2

∴cosx+cosy=2cos[(x+y)/2]cos[(x-y)/2]

--------------------(24)--------------------

根據(3),代入A+B=x A-B=y,由此亦得出A=(x+y)/2 B=(x-y)/2

∴cosx-cosy=-2sin[(x+y)/2]sin[(x-y)/2]