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Introduction

This is intended to be a complete review notes including all statistics courses in
Ph.D exams: Statistics, Econometrics, Time Series and Cross section Analysis.
For now, only statistics is included.
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Chapter 1

Probability Theory

1.1 Lecture 1

Sample Space 
: the collection of all possible outocme of an experiment
Event E: A collection of outcome
Experiment: a process that could be repeated

Set Theory

Terminology: empty set ?, �nite and in�nte sets, disjoint sets.
Operation of Set: union [, intersection \, complement C , di¤erence �, subset
�, element of a set 2.

Property of Set Operation

1. Commutative: A [B = B [A, A \B = B \A

2. Associative: A [ (B [ C) = (A [B) [ C, (A \B) \ C = A \ (B \ C)

3. Distributive: A\ (B [ C) = (A \B)[ (A \ C), A[ (B \ C) = (A [B)\
(A \ C)

4. DeMorgan�s Law: (A \B)C = AC [BC , (A [B)C = AC \BC

5. Re�exive Law: A [A = A, A \A = A

Collection of sets

1. Partition: Sets Ai (i = 1; 2; : : : ; n) where Ai\Aj = ? (i 6= j) are paritition
of S if S =

Sn
i=1Ai. Note that n can be in�nite.

2. Field: closed under �nite union and closed under complementation. Field
A is a collection of sets A1; : : : ; An satisfying the following properties:

3



4 CHAPTER 1. PROBABILITY THEORY

(a) If A1; A2; : : : ; An 2 A, then
Sn
i=1Ai 2 A.

(b) If A 2 A, then AC 2 A.

3. ���eld: closed under countable unition and closed under complementa-
tion. Field A is a collection of sets A1; A2; : : : satisfying the following
properties:

(a) If A1; A2; : : : 2 A, then
S1
i=1Ai 2 A.

(b) If A 2 A, then AC 2 A.

If A1;A2 are �-�elds, A1 \ A2 is also �-�eld. In general, A1 [ A2 is not
necessary a �-�eld. However, there exists a unique smallest �-�eld that
contains all elements of A1 and A2.

1.2 Lecture 2

De�nition of Probability

(Kolmogorov Axiom of probability) Given a sample space 
 and an associated
�-�eld that contains subsets of 
, a probability de�ned as P , is a function (of
sets) from A to [0; 1] satisfying the following properties:

1. 8A 2 A, P (A) � 0

2. P (
) = 1

3. Additive Property: For disjoint events A1; A2; : : : 2 A,

P (
S1
i=1Ai) =

P1
i=1 P (Ai)

Therefore, probability space is de�ned as (
;A; P )

Property of Probability

1. If [ni=1Ai = 
 and A1; : : : An is partition of 
, then
Pn

i=1 P (Ai) = 1.

Proof: Direct application of additive property. P (
) = P (
Sn
i=1Ai) =Pn

i=1 P (Ai) = 1

2. P
�
AC
�
= 1� P (A)

Proof: special case of property 1 when A1 = A and A2 = AC .

3. P (?) = 0

Proof: special case of property 2 when A1 = 
 and A2 = ?
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4. If A � B, then P (A) � P (B).

Proof: From non-negativity of probability.

B = B \ 
 = B \
�
A [AC

�
= (B \A) [

�
B \AC

�
= A [

�
B \AC

�
so we have

P (B) = P
�
A [

�
B \AC

��
= P (A) + P

�
B \AC

�
� P (A)

5. 0 � P (A) � 1

Proof: Monotonicty of probability. Non-negativity is from P (A) � 0 and
bounded by 1 is by second and third axiom.

6. P (A [B) = P (A) + P (B)� P (A \B)

Proof:

A [B = A [ (
 \B) = A [
��
A [AC

�
\B

�
= A [

�
(A \B) [

�
AC \B

��
= [A [ (A \B)] [

�
A [

�
AC \B

��
= A [

�
A [

�
AC \B

��
= A [

�
AC \B

�
= (A \ 
) [

�
AC \B

�
=
�
A \

�
B [BC

��
[
�
AC \B

�
= (A \B) [

�
A \BC

�
[
�
AC \B

�
so that

P (A [B) = P (A \B) + P
�
A \BC

�
+ P

�
AC \B

�
However, we know that

P (A) = P (A \B) + P
�
A \BC

�
P (B) = P (A \B) + P

�
AC \B

�
Hence,

P (A [B) = P (A \B) + [P (A)� P (A \B)] + [P (B)� P (A \B)]
= P (A) + P (B)� P (A \B)
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Inequalities of Probability

1. Bonferroni�s Inequlity:

P (A \B) � P (A) + P (B)� 1

Proof: P (A [B) = P (A)+P (B)�P (A \B) � P (A)+P (B)� 1 since
0 � P (A \B) � 1

2. Bode�s inequality:
P (
S1
i=1Ai) �

P1
i=1 P (Ai)

Proof: Omitted.

3. Extenion of Property 6:

P (A [B [ C) = P (A) + P (B) + P (C)� [P (A \B) + P (A \ C) + P (B \ C)]
+P (A \B \ C)

or more generally,

P (
Sn
i=1Ai) =

Pn
i=1 P (Ai)�

P
i<j P (Ai \Aj)+� � �+(�1)

q+1P
i1<:::<iq

P
�Tq

i=1Aij
�
+� � �

Probability for limit of sequence of events

1. Let Ai be an increasing sequence of events (Ai � Ai+1). De�ne A =
lim
i!1

Ai =
S1
i=1Ai. Then P (A) = lim

i!1
P (Ai) :

Proof: De�ne Ax = (�1; x] which is an increasing sequence set in x as
Ay � Az if y � z. Hence, by property 4,

P (X 2 Ay) � P (X 2 Az)

De�ne Dk = Ak � Ak+1, A0 = ? and D1 = A1, then Dk is sequence of
disjoint sets. By construction, we haveSn

i=1Ai =
Sn
i=1Di;

S1
i=1Ai =

S1
i=1Di

so that

P
�
lim
i!1

Ai

�
= P (

S1
i=1Ai) = P (

S1
i=1Di) =

1P
i=1

P (Di)

= lim
n!1

nP
i=1

P (Di) = lim
n!1

nP
i=1

P (Ak �Ak+1)

= lim
n!1

nP
i=1

[P (Ak)� P (Ak+1)] = lim
n!1

P (An)

2. Let Ai be a decreasing sequence of events (Ai � Ai+1). De�ne A =
lim
i!1

Ai =
T1
i=1Ai. Then P (A) = lim

i!1
P (Ai) :

Proof: Similar.
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1.3 Lecture 3

Conditional probability

De�nition: If P (A) > 0, then the conditional probability P (B j A) is de�ned as
the proportion of total probability P (A) that is represented by the probability
of P (A \B). In formula,

P (B j A) = P (A \B)
P (A)

Multiplicative Rule

From the de�nition of conditional probability, we have

P (A \B) = P (B j A)P (A)

or generally, for �nite k,

P
�Tk

i=1Ai

�
= P (A1)P (A2 j A1) � � �P

�
Ak j

Tk�1
i=1 Ai

�
Independent Event

Event A and B are independent if

P (A \B) = P (A)P (B)

or if P (A) > 0 and P (B) > 0, then A and B are independent if

P (A j B) = P (A) and P (B j A) = P (B)

For k events, A1; : : : ; Ak are independent i¤ for all j = 2; : : : ; k and (i1; : : : ; ij) �
(1; : : : ; k)

P (Ai1 \ � � � \Aik) = P (Ai1) � � �P
�
Aij
�

Conditional Independence

A;B;C are events in probability space with P (A) > 0, then B and C are
conditionally independent given A i¤

P (B \ C j A) = P (B j A)P (C j A)

Law of Total Probability

Consider Ai be the partition of 
, that is,
Pk

i=1 P (Ai) = 1, Ai \ Aj = ?,Sk
i=1Ai = 
. For any event B 2 
, we have

P (B) = P
�Sk

i=1 (B [Ai)
�
=
Pk

i=1 P (B [Ai)

=
Pk

i=1 P (Ai)P (B j Ai)
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Bayes Theorem

Let event B1; : : : ; Bk be partition of 
, P (Bi) > 0 and event A in the same
space with P (A) > 0, then

P (Bj j A) =
P (Bj)P (A j Bj)Pk
i=1 P (Bi)P (A j Bi)

1.4 Lecture 4

Random Variables

A random variable X is a function X (!) : 
! R such that 8B 2 B, X�1 (B) 2
F where F is �-�eld in original sample space and B is the Borel �-�eld which
is the smallest �-�eld that contains all open intervals of R.
Random variable tranforms the probability space from (
;F ; P ) to (R;B; PX)

Distributive Function of a random variable

Also known as cumulative distribution function, or c.d.f.. In symbol, it is

F (x) = PX (X � x) = PX (X 2 (�1; x]) 8x 2 R

Properties of c.d.f.

1. 0 � F (x) � 1
Proof: 0 � P (x) � 1

2. F (x) is non-decreasing in x.

Proof: Ax = (�1; x] is an increasing sequence set in x, so Ax � Ay if
x � y. Hence,

P (X 2 Ax) � P (X 2 Ay)

3. De�ne F (�1) = limn!1 F (�n). F (�1) = 0
Proof: Taking An = (�1; n],

F (�1) = lim
n!�1

P (X 2 An) = P
�
X 2 lim

n!�1
An

�
= P (X 2 A�1) = P (X 2 ?) = 0

4. De�ne F (1) = limn!1 F (n). F (1) = 1
Proof: Similar.

5. F (x) is right continuous, that is

lim
"&0

F (x+ ") = F (x)
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Proof: let An =
�
�1; y + 1

n

�
which converge to A1 = (�1; y]. Then

lim
"!0

F (x+ ") = lim
n!1

P (X 2 An) = P
�
X 2 lim

n!1
An

�
= P (X 2 (�1; y]) = F (x)

1.5 Lecture 5

Continuous Random Variable

If F (x) is di¤erentiable, we consider the derivative of distribution function F (x)
and de�ne it as the probability density function:

f (x) =
dF (x)

dx

which implies

F (x) =

Z x

�1
f (u) du

with following properties:

1. f (x) � 0

Proof: F (x) is non-negative for all x.

2.
R1
�1 f (x) dx = 1

Proof: F (1) = 1

3. P (a � x � b) =
R a
b
f (x) dx

Proof: P (x � b)�P (x � a) = F (b)�F (a) =
R b
�1 f (u) du�

R b
�1 f (u) du =R a

b
f (x) dx

Discrete Random Variable

Random variable X takes value on discrete points x1; : : : ; xn with P (X = xj) =
pj . The probability function is f (xj) = pj with the following properties:

1. f (xj) � 0

2.
P

j f (xj) = 1

3. F (x) = P (X � x) =
P

i:xi�x f (xi)
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Distribution of Two Random Variables

Joint Distribution Function of X;Y

F (x; y) = P (X � x; Y � y)

Marginal distribution function of X and Y

FX (x) = P (X � x) = P (X � x; Y <1) = F (x;1)
FY (y) = P (Y � y) = P (X <1; Y � y) = F (1; y)

Properties of Joint Distribution Function

1. 0 � FX (x) � 1, 0 � FY (y) � 1
Proof: Any probability value is bounded by 0 and 1

2. F (x; y) is non-decreasing. That is, for all a; b > 0;

F (x+ a; y + b)� F (x+ a; y)� F (x; y + b) + F (x; y) � 0

Proof: Simple Graphic would justify it.

3. F (�1; y) = 0 and F (x;�1) = 0

4. F (1;1) = 1

5. F (x; y) is right continuous, that is,

lim
"1#0;"2#0

F (x+ "1; y + "2) = lim
"1#0

F (x+ "1; y) = lim
"2#0

F (x; y + "2) = F (x; y)

Conditional Independence

Events A and B are independent if for all Borel set A;B 2 B,

P (X 2 A j Y 2 B) = P (X 2 A; Y 2 B)
P (Y 2 B)

or

PXjY (A j B) = PX (A) 8A;B 2 B
PX\Y (A \B) = PX (A)PY (B) 8A;B 2 B

Independence Condition from Marginal Distribution

Given existence of F (x; y) ; FX (x) ; FY (y), we have

F (x; y) = FX (x)FY (y) 8x; y

if and only if X and Y are independent.
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Proof: "Only if": We need to show for all (a1; b1] and (a2; b2], we have

P ((a1; b1] \ (a2; b2]) = PX ((a1; b1]) � PY ((a2; b2])

Now, we have

P ((a1; b1] \ (a2; b2]) = P (a1 < x � b1; a2 < y � b2)
= P (X � b1; Y � b2)� P (X < a1; Y � b2)� P (X � b1; Y < a2) + P (X � a1; Y � a2)
= F (b1; b2)� F (a1; b2)� F (b1; a2) + F (a1; a2)
= FX (b1)FY (b2)� FX (a1)FY (b2)� FX (b1)FY (a2) + FX (a1)FY (a2)
= FX (b1) [FY (b2)� FY (a2)]� FX (a1) [FY (b2)� FY (a2)]
= [FX (b1)� FX (a1)] [FY (b2)� FY (a2)]
= PX ((a1; b1]) � PY ((a2; b2])

"If": Since X and Y are independent, taking A = (�1; x] ; B = (�1; y], we
have

P ((a1; b1] \ (a2; b2]) = PX ((a1; b1]) � PY ((a2; b2])
so that

F (x; y) = FX (x)FY (y) 8x; y

1.6 Lecture 6

Joint Probability Function

Joint probability function is denoted as f (xi; yj) = P (X = xi; Y = yj) = pij
Marginal probability function for X: P (X = xi) =

P
j P (X = xi; Y = yj) =P

j pij = pi�
Marginal probability function for Y : P (Y = yi) =

P
i P (X = xi; Y = yj) =P

i pij = p�j
Conditional probability funciton:

P (X = xi j Y = yj) =
P (X = xi; Y = yj)

P (Y = yj)
=
pij
p�j

Joint Probability Density Function

If F (x) is di¤erentiable, then

@2F (x; y)

@x@y
= f (x; y)

is called joint density function with following properties (state without proof):

1. f (x; y) � 0

2.
R1
�1

R1
�1 f (x; y) dxdy = 1

3.
R x
�1

R y
�1 f (u; v) dudv = F (x; y)
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Marginal Density Fucntion

fX (x) =

Z 1

�1
f (x; y) dy; fY (y) =

Z 1

�1
f (x; y) dx

Marginal distribution Fucntion

FX (x) =

Z x

�1
fX (u) du; FY (y) =

Z y

�1
fY (v) dv

Conditional Distribution Fucntion

P (X � x j Y = y) = F (x j y)
= lim

�!0
P (X � x j y � � � Y � y + �)

= lim
�!0

P (X � x; y � � � Y � y + �)
P (y � � � Y � y + �)

2�

2�

= lim
�!0

R x
�1

R y+�
y�� f (u; v) dvduR y+�
y�� fY (v) dv

2�

2�

= lim
�!0

R x
�1

F (u; y + �)� F (u; y + �)
2�

du

FY (y + �)� FY (y � �)
2�

=

R x
�1 f (u; y) du

fY (y)

Conditional Probability Density Fucntion

f (x j y) = @F (x; y)

@y
=
f (x; y)

f (y)

Generalized Multiplicative Rule

f (x; y) = fX (x) fY (y j x) = fY (y) fX (x j y)

Generalized Law of Total Probability

fX (x) =

Z 1

�1
f (x; y) dy =

Z 1

�1
fX (x j y) fY (y) dy

Generalzied Bayes Theorem

f (x j y) = fX (x) fY (y j x)R1
�1 fX (x j y) fY (y) dy
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Joint Distribution for k random variable

F (X1; : : : ; Xk) = P (X1 � x1; : : : ; Xn � xn)

For discrete case, probability distribution is completely determined by

P (X1 = x1; : : : ; Xk = xk)

For continuous case,

f (x1; : : : ; xk) =
@kF (x1; : : : ; xk)

@x1 � � � @xk

1.7 Lecture 7

Function of Random Variable

A function of a random variable g (X) is also a random variable as long as the
mapping is mearsurable, that is,

8B 2 B, P (g (X) 2 B)

is de�ned if X�1 �g�1 (B)� 2 F :
Transformation of Discrete random variable

Discrete Case: For Y = r (X),

P (Y = y) = P (r (X) = y) =
X

i:r(xi)=y
P (X = xi)

Transformation of Continuous random variable

Method I (Inversion method): For Y = r (X) ;

P (Y � y) = P (r (X) � y) =
Z
x:r(x)�y

f (x) dx

Method II (Jacobian transformation):
Thm: Suppose P (a < X < b) = 1, Y = r (X) is a continuous and monotone
function for a < X < b. When a < X < b, � < Y < �. Then the p.d.f. of Y is
given by

g (y) = f
�
r�1 (y)

� ����dxdy
����

for all � < y < � where f (�) is pdf of X. In particular,
if r (�) is an increasing fucntion, g (y) = f

�
r�1 (y)

� dx
dy
.

if r (�) is a decreasing fucntion, g (y) = �f
�
r�1 (y)

� dx
dy
.
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Proof: If r is increasing, then

G (y) = P (Y � y) = P (r (X) � y) = P
�
X � r�1 (y)

�
= F

�
r�1 (y)

�
which implies

g (y) = f
�
r�1 (y)

� dx
dy

Similarly, if r is decreasing,

G (y) = P (Y � y) = P (r (X) � y) = P
�
X � r�1 (y)

�
= 1� F

�
r�1 (y)

�
which implies

g (y) = �f
�
r�1 (y)

� dx
dy

Transformation of Several random variables

X1; : : : ; Xn are random variables and the new random variables Y1; : : : ; Ym are
represented by function 8><>:

Y1 = r1 (X1; : : : ; Xn)
...

Ym = rm (X1; : : : ; Xn)

Discrete Case:

P (Y1 = y1; : : : Yn = yn) =
X

x=(x1;:::;xn);rj(x)=yj

P (X = xj)

Continuous Case:
Method I (Inversion method)

G (y1; : : : ; ym) = P (Y1 � y1; : : : ; Ym � ym)

=

Z
� � �
Z

rj(x1;:::;xn)�yj ;j=1;:::;m

f (x1; : : : ; xn) dx1 � � � dxn

Method II (Jacobian matrix)
For case of one-to-one mapping (m = n)
If P ((x1; : : : ; xn) 2 S) = 1 and there is a one-to-one correspondence between
(X1; : : : ; Xn) and (Y1; : : : ; Yn), Yj = rj (X1; : : : ; Xn), then the joint p.d.f. of
(Y1; : : : ; Yn) can be obtained from

g (y1; : : : ; yn) = f (x1 (y) ; : : : ; xn (y))

����dxdy
����

where ����dxdy
���� =

264
dx1
dy1

: : : dx1
dyn

...
. . .

...
dxn
dy1

� � � dxn
dyn

375
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is called the Jacobian of Transformation.
Speical Case I: r is linear combination of X1; : : : ; Xn.264 Y1

...
Yn

375 = Y = AX = A

264 X1
...
Xn

375
and A is non-singular, then we have

X = A�1Y ;

����dxdy
���� = ��A�1��

so that
g (y) =

1

jAjf
�
A�1y

�
Useful Transformation

X1; : : : ; Xn � F (�), f (xi) are iid, Yn = max fX1; : : : ; Xng and Zn = min fX1; : : : ; Xng.
Now,

P (Yn � y) = P (max fX1; : : : ; Xng � y)
= P (X1 � y; : : : ;Xn � y)
= P (X1 � y) : : : P (Xn � y)
= [F (y)]

n � G (y)

and if Xi are continuous,

g (y) = n [F (y)]
n�1

f (y)

Now,

P (Zn � z) = P (min fX1; : : : ; Xng � z)
= 1� P (min fX1; : : : ; Xng � z)
= 1� P (X1 � z; : : : ;Xn � z)
= 1� [P (X1 � z) : : : P (Xn � z)]
= 1� [1� F (z)]n � H (y)

and if Xi are continuous,

h (z) =
dH (z)

dz
= n [1� F (y)]n�1 f (y)

so

P (y � X1; : : : ; Xn � z) = F (Yn � y; Zn � z)
= P (Yn � y)� P (Yn � y; Zn > z)
= P (Yn � y)� P (z < X1 � y; : : : ; z < Xn � y)
= [F (y)]

n � [F (y)� F (z)]n
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Transformation by Convolution

X1 and X2 are two random variables and let Y = X1+X2 and Z = X2 so that�
Y
Z

�
=

�
1 1
0 1

� �
X1
X2

�
= AX where

��A�1�� = 1
where

g (y; z) = f (x1 (�) ; x2 (�))
1

jAj
= f (y � z; z)

so that

g (y) =

Z
f (y � z; z) dz

Furthermore, if X1 and X2 are independent, then

g (y) =

Z
f1 (y � z) f2 (z) dz

1.8 Lecture 8

Expectation of Discrete Random Variable

For a discrete random variable X taking values fxjgJj=1, with probabilility func-
tion P (X = xj) = pj , the expectation of X is de�ned as

EX =
XJ

j=1
xjpj

Rmk: For EX <1, we need to have
PJ

j=1 jxj j pj <1.

Expectation of Continuous Random Variable

The expectation of continuous random variable X with pdf f (x) is

EX =

Z 1

�1
xf (x) dx

Rmk 1: EX exists if
R1
�1 jxj f (x) dx <1.

Rmk 2: Since dF (X) = f (x) dx, we have EX =
R1
�1 xdF (x).

Properties of Expectation

Rmk: For the following proof, we only show the continuous case as discrete case
is similar.
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1. If P (X = c) = 1, then EX = c:

Proof: Immediate from de�nition.

2. If EX exists, then E (cX) = cX:

Proof: As constant can be taken out from summation/integral.Z 1

�1
cf (x) dx = c

Z 1

�1
f (x) dx = c

3. If Y = aX + b and EX exists, EY = aEX + b:

Proof: EY exists because

jY j � jaj jXj+ jbj )
Z 1

�1
jyj dF (y) � jaj

Z 1

�1
jxj dF (x) + jbj <1

4. If Y = X1 +X2, EX1 and EX2 exist, then EY = EX1 + EX2.

Proof: EY exists becauseZZ
jx1 + x2j f (x1; x2) dx1dx2

�
ZZ

(jx1j+ jx2j) f (x1; x2) dx1dx2

=

ZZ
jx1j f (x1; x2) dx1dx2 +

ZZ
jx2j f (x1; x2) dx1dx2

=

Z
jx1j f (x1) dx1 +

Z
jx2j f (x2) dx2 <1

where the result is just additive property of integration.

5. Linear property: If EXi exists, E (a1X1 + � � �+ akXk + b) = a1EX1 +
� � � akEXk + b
Proof: General case of property 4.

6. If P (X � a) = 1, a is a constant, then EX � a.
Proof:

EX =

Z
xdF (x) =

Z
x<a

xdF (x) +

Z
x�a

xdF (x)

=

Z
x�a

xdF (x) �
Z
x�a

adF (x) = aP (X � a) = a

7. If P (X � a) = 1 and EX = a, then P (X > a) = 0 and P (X = a) = 1.

Proof:

EX =

Z
xdF (x) =

Z
x<a

xdF (x) +

Z
x�a

xdF (x)
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which implies

a = lim
"!0

Z a+"

a

xdF (x) +

Z 1

a+"

xdF (x)

and this can only be true if P (X > a) = 0 and P (X = a) = 1.

1.9 Lecture 9

Expectation of function of random variable

E [g (x)] =

Z 1

�1
g (x) dF (x)

Moments

Special Case I: g (X) = Xr, we call EXr the r-th raw moment of X.
Thm: If EXr exists, then for any 0 < s < r, EXs <1.
Proof: Z

jxjs dF (x) =

Z
jxj<1

jxjs dF (x) +
Z
jxj�1

jxjs dF (x)

�
Z
jxj<1

dF (x) +

Z
jxj�1

jxjs dF (x)

�
Z
jxj<1

dF (x) +

Z
jxj�1

jxjr dF (x) <1

Rmk 1: If kth moment does not exist, (k + 1)th moment will also not exist.
Rmk 2: When r = 1, we call EX as mean of distribution.
Special Case II: g (X) = (X � EX)r, we call E (X � EX)r the r-th central
moment of X.
Rmk 1: EXr exists then E (X � EX)r also exists.
Rmk 2: E (X � EX)r =

�
r
0

�
EXr �

�
r
1

�
EXr�1EX +

�
r
2

�
EXr�2EXr + � � � +

(�1)r
�
r
r

�
EXr.

Rmk 3: When r = 2, we call E (X � EX)2 the variance of distribution.

Properties of Variance

1. Y = aX + b, then V arY = a2V arX

Proof: From de�ntiion

2. If V arX = 0, then there exists c such that P (X = c) = 1

Proof: V ar (X) = 0 implies E (X � EX)2 = 0. Then this means for all
X, X = EX, so that all X would always be equal to one constant, say c.
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Skewness and Kurtosis

Skewness: Measure the symmetry of the distribution:

�1 =
E (X � EX)3

�3

Kurtosis: Measure the tail of distribution:

�2 =
E (X � EX)4

�4

Median and Mode

Median m is de�ned as P (X � m) = P (X � m) = 0:5.
For continuous variable,

m = F�1 (0:5)

where F�1 is inverse function of distribution function F .
Mode �0 is de�ned as f (�0) = supX f (X).

Quartile, Interquartile range and Range

If F (x) is strictly monotone, F�1 (�) is called � -th quartile of X where � 2 [0; 1]
We call Q (�) = F�1 (�) as quartile function
In general, the � -th quartile of a distribution is de�ned as

Qx (�) = inf fx : F (x) � �g

when � = 0:5, Qx (�) is the median.
when � = 0:25; 0:5; 0:75, Qx (�) are quartiles.
when � = 0:2; 0:4; 0:6; 0:8; Qx (�) are quintiles.
when � = 0:1; 0:2; : : : ; 0:9, Qx (�) are deciles.
Interqartile range IQR is de�ned as IQR = Qx (0:75)�Qx (0:25)
Range is de�ned as range = supx� inf x = Qx (1)�Qx (0).

Bivariate Moments

1. EXY =
RR
xyf (x; y) dxdy =

RR
xydF (x; y)

2. Eg (X;Y ) =
R
g (x; y) dF (x; y)

3. E (XrY s) is called the product of raw moment of order r and s.

4. E [(X � EX)r (Y � EY )s] is called the product of central moment of order
r and s.

5. Particularly, when r = 1, s = 1, we have

Cov (X;Y ) = E [(X � EX) (Y � EY )]
= EXY � EXEY
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6. Furthermore, if X and Y are independent, then Cov (X;Y ) = 0.

Proof: Cov (X;Y ) = EXY � EXEY = EXEY � EXEY = 0.

7. If cov (X;Y ) = 0, then X and Y are uncorrelated.

Correlation

corr (X;Y ) =
cov (X;Y )p
V arX

p
V arY

Thm: Correlation coe¢ cient is bounded by 1, jcorr (X;Y )j � 1 .
Proof: By Cauchy-Scharwz inequality,

[E (AB)]
2 � EA2EB2

Taking A = X � EX and Y = Y � EY , we have

E [(X � EX) (Y � EY )]2 � E (X � EX)2E (Y � EY )2

or

[cov (X;Y )]
2 � V arX � V arY

so that
[cov (X;Y )]

2

V arX � V arY � 1

which implies

jcorr (X;Y )j � 1

1.10 Lecture 10

Generating Function

Given a random variable X, generating function GX (t) is de�ned as

GX (t) = Eg (x; t) =

Z
g (x; t) dF (x)

Probability Generating Function

g (x; t) = tx

PX (t) =

Z
txdF (x) = Etx
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Moment Generating Function

g (x; t) = etx

MX (t) = Ee
tx =

Z
etxdF (x)

For small value of t,

etx = 1 + tx+ � � �+ (tx)
j

j!

so that

MX (t) =

Z 1P
j=0

(tx)
j

j!
dF (x) =

1P
j=0

tj

j!

Z
xjdF (x)

which implies
@jMx (t)

@tj

����
t=0

= EXj

Characteristic Function

g (x; t) = eitx

�X (t) =

Z
eitxdF (x) = Eeitx

Rmk 1: Characteristic Function is always well-de�ned.Z
eitxdF (x) <1

since
eitx = cos tx+ i sin tx

so that ��eitx�� = 1:
Rmk 2: If X is vector of random variable, the c.f. would be, for example, say
X = (Y; Z)

�X (t; s) = Ee
i(tY+sZ) = E

�
eitY eisZ

�
Properties of Characteristic Function

1. There is one to one correspondence between c.f. and p.d.f..

2. If the r-th moment exists, then

EXr =
1

ir
@�X (t)

@tr

����
t=0

:
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Proof:

@�X (t)

@tr
= ir

Z
xreitxdF (x)

= ir
Z
xrdF (x) as t!1

= irEX

3. Relationship between m.g.f. and c.f.:

�X (t) =MX (it)

Proof: From de�nition, MX (t) = Ee
tX and �X (t) = Ee

itX

4. Linear function of random variable:

�a+bXt = e
ita�X (bt)

Proof: From de�nition, �a+bX (t) = Ee
it(a+bX) = eitaEei(tb)X = eita�X (bt)

5. If X and Y are independent random variables, we have

�X+Y (t; s) = �X (t)�Y (s)

6. If
@�X (t)

@tr

����
t=0

exists, then

�
E jXrj <1
E
��Xr�1�� <1 if r is even

if r is odd

7. If jXrj <1, then

�X (t) =
kP
j=0

EXj

j!
(it)

j
+ o

�
tk
�

where o
�
tk
�
is de�ned as

lim
t!1

o
�
tk
�

tk
= 0:

8. The density function f (x) can be obtained by inverse transformation

f (x) =
1

2�

R1
�1e

�itx�X (t) dt:
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1.11 Lecture 11

Normal Distribution

The density function is

f (x) =
1p
2��

e
�
(x� �)2

2�2

for all x 2 R, �1 < � <1 ,� > 0 with the mean and variance equal to

EX = �; V arX = E (x� �) = �2:

The rth central moment is

E (X � �)r =

�
0

(2k � 1) (2k � 3) � � � 3 � 1 � �2k
if r is odd
if r is even and r = 2k

= cr�
r where cr =

�
0

(2k � 1) (2k � 3) � � � 3 � 1
if r is odd
if r is even and r = 2k

The mgf and cf are

MX (t) = exp

�
�t+

�2t2

2

�
; �X (t) = exp

�
iut� �

2t2

2

�
Standard Normal Distribution

When � = 0 and �2 = 1, then we call the distribution to be standard normal
and the p.d.f. and c.d.f. are denoted by � (x) and � (x) respectively.

Property of Normal distribution

1. If X � N
�
�; �2

�
, then Y = aX + b � N

�
a�+ b; a2�2

�
Proof: �Y (t) = �aX+b (t) = e

itb�X (at) = e
itb
h
ei�(at)��

2(at)2=2
i
= ei(a�+b)t�(a�)

2t2=2

2. If X1; : : : ; Xk � N
�
�i; �

2
i

�
are i.i.d., then

kP
i=1

Xi � N
�

kP
i=1

�i;
kP
i=1

�2i

�
:

Proof: Let Y =
P
xi for i = 1; : : : ; k of �Xi

(t) = exp
n
iuit� �2i t

2

2

o
. Since

xi are independent,

�Y (t) =
kQ
i=1

�Xi
(t) =

kQ
i=1

exp

�
iuit�

�2i t
2

2

�
= exp

(
it

kP
i=1

ui �
t2
Pk

i=1 �
2
i

2

)
:
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3. If Y = a+
Pk

i=1 bixi, then Y � N
�
a+

Pk
i=1 bi�i;

Pk
i=1 b

2
i�

2
i

�
Proof: Combination of 1 and 2 proof.

Multivariate normal distribution

Xi (i = 1; : : : ; p) are N
�
�i; �

2
i

�
with covariance matrix �p�p where

� =

266664
�11 �12 � � � �1p

�21
. . .

...
...

. . .
...

�p1 � � � � � � �pp

377775
such that �ii = �2i and �ij = cov (Xi; Xj).
Let X = (X1; X2; : : : Xp)

T is a p-dimensional normal distribution with mean

� =
�
�1; �2; : : : ; �p

�T
and covariance matrix �. The joint density of X is

f (x) =
1

(2�)
p=2 j�j1=2

exp

�
�1
2
(x� �)T ��1 (x� �)

�
for x 2 Rp

and we denote this by X � N (�;�).
Prop: If X � N (�;�), then AX � N

�
A�;A�AT

�
Proof: Omitted.

Distribution dervied from Normal

Lognormal Distribution

X is lognormal if Y = logX � N
�
�; �2

�
c.f. is �X (t) = exp

�
i�t� �2t2=2

	
m.g.f. MX (t) = EX

t = exp
�
�t+ �2t2=2

	
EX = exp

�
�+ �2=2

�
and V arX = e2�+�

2
�
e�

2 � 1
�

�2 Distribution

If Xi (i = 1; : : : ; p) are independent N (0; 1), then Y =
Pp

i=1X
2
i is called a

random variable of �2 distribution with p degree of freedom, which is denoted
as Y � �2p.
The following are properties of chi-square distribution:

1. If Zi � N
�
ui; �

2
i

�
are independent, then

pP
i=1

�
Zi � �i
�i

�2
� �2p
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2. EX = p and V arX = 2p. Other higher moments can be found be using
the formula:

E (X � �)r = cr�r where cr =
�

0
(2k � 1) (2k � 3) � � � 3 � 1

if r is odd
if r is even and r = 2k

3. If Y1 � �2 (p) and Y2 � �2 (q), Y1 and Y2 are independent, then Y1+Y2 �
�2 (p+ q).

Non-central �2- distribution

If Xi are independent N (�i; 1) and �i 6= 0 , then

Y =
pP
i=1

X2
i � �2p

�
pP
i=1

�2i

�
where

Pp
i=1 �

2
i is called non-central parameter.

Properties: For Y � �2p (�), EX = p+ � and V arX = 2p+ 4�
Proof:

Y =
P
X2
i =

P
(Xi � �i + �i)

2

=
Ph

(Xi � �i)
2
+ �2i + 2 (Xi � �i)�i

i
=

P
(Xi � �i)

2
+
P
�2i

Student�s t distribution

If X � N (0; 1), Y � �2p and X;Y are independent, then

t =
Xp
Y=p

has t distribution with degree of freedom p.

Rmk1: f (x) = cp

�
1 +

x2

p

�� p+1
2

where c is a constant depend on p

Rmk2: tp ! N (0; 1) as p!1.
Rmk3: For X � tp having moments up to order (p� 1),

1. EXr does not exist when r � p:

2. For r < p,

EXr =
pr=2�

�
r+1
2

�
�
�
p�r
2

�
�
�
1
2

�
�
�
p
2

�
where

� (a) =
R1
0
xa�1e�xdx:

3. EX = 0 for p > 1 and V arX = p
p�2 for p > 2.
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F-distribution

If Y1 � �2m, Y2 � �2n are independnet, then

Fm;n =
Y1=m

Y2=n

Rmk1: For r < n=2, EXr exists.

Rmk2: For n > 2, EX =
n

n� 2 ; For n > 4, V arX =
2n2 (m+ n� 2)
m (n� 2)2 (n� 4)

; For

n!1, EX = 1

Rmk3: t2q =
�21
�2q=q

� F (1; q); This can be seen by V ar (tq) = q
q�2 ! 1 as q !1

and E (tq) = 0.

Other Distribution

Gamma Distribution

f (x) =
1

� (t)
�txt�1e��x;x � 0; t > 0

EX =
t

�
; V arX =

t

�2

Bernoulli Distribution

X =

�
0
1

with probability p
with probability 1� p

so that
p (x) = px (1� p)1�x

Binomial Distribution

If Y = X1 + X2 + � � � + Xn where Xi are i.i.d. Bernoulli distribution, then
Y � B (n; p)

Possion Distribution

X takes the value from 0; 1; 2; � � � . The probability function is

P (X = x) =
e���x

x!

Indicator Fucntion

For event A 2 
, IA is de�ned as

IA =

�
0
1

! 62 A
! 2 A

Rmk: This is speical case of Bernoulli.
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1.12 Lecture 12

Markov Inequality

Let g (�) be a non-negative function of a random variable X and E [g (X)] exists,
then for any c > 0, we have

P [g (X) � c] � E [g (X)]

c

Proof:

E [g (X)] =

Z
g (x) dF (x) =

Z
g(x)�c

g (x) dF (x) +

Z
g(x)<c

g (x) dF (x)

�
Z
g(x)�c

g (x) dF (x) �
Z
g(x)�c

cdF (x) = cP [g (X) � c]

If X is non-negative, that is P (X � 0) = 1. Then, let g (X) = X, we have

P (X � c) � EX

c
:

In general, consider g (x) = jxj, then

P (jXj � c) � E jXj
c

Chebyshev�s Inequality

Consider g (x) = (x� �)2 where � = EX, then we have

P
h
(x� �)2 � c

i
�
E
h
(x� �)2

i
c

=
V arX

c

Furthermore, taking c = "2�2 then,

P
h
(x� �)2 � "2�2

i
� �2

"2�2
=
1

"2

which implies

P [jx� �j � "�] � 1

"2

Generalized Markov Inequality

Let g (�) be a non-negative function on R and g (�) is non-decreasing on the range
of a random variable z. Then

P (z � a) � E [g (z)]

g (a)

Proof:

P (z � a) = P (g (z) � g (a)) � E [g (z)]

g (a)

where the last step is application of Markov inequality.
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Berkstein Inequality

Let g (t) = ebt for b > 0, then

P (z � a) � e�abEebz � inf
b�0

e�abEebz

Corollory 1: If X � Binomial (n; p), then P (jx� npj � n") � 2e�n"2=2
Corollory 2: If ui are independent r.v. and P (ui � b) = 1, v =

Pn
i=1E

�
u2i
�
,

then for all a > 0, we have

P

"
nX
i=1

�
u2i � v

�
� a

#
� exp

�
� a2

2 (v + ba=3)

�

Jensen�s Inequality

If g is convex on S � R and S is convex and closed, P (X 2 S) = 1, E [g (x)] <1
and EX <1, then

E [g (X)] � g [E (X)] :

Covariance inequality

Cauchy-Schwarz Inequality

(EXY )
2 � EX2EY 2

Holder�s Inequality

If p; q > 1 and
1

p
+
1

q
= 1, then

E jXY j � (E jXpj)1=p (E jXqj)1=q

Notation: kXkp = (E jXpj)1=p called the Lp norm so that

kXY k � kXkp kY kq

Minokowski Inequality

For p > 1,
E (jX + Y jp)1=p � (E jXpj)1=p + (E jXqj)1=q

or
kX + Y kp � kXkp + kY kp

Lyapunov�s Inequality

For any p � q > 0;
kXkp � kY kq .
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Point-wise Convergence

We say fn converge to f point-wisely if for all x, fn (x)! f (x).
Rmk: Not enough to ensure asymptotic property. Need stronger condition. We
need to de�ne distance d between fn and f to be less than a very small number.
If d is norm, it is norm convergence.

Norm

Let V be a collection of functions. k�k is a norm of V if

1. kfk � 0 for all f 2 V

2. kfk = 0 i¤ f is a zero function

3. 8a 2 R, 8f 2 V; kafk = jaj kfk

4. 8f; g 2 V ,kf + gk � kfk+ kgk

Rmk: If V satis�es these four properties, we say V is endowed with norm.

Norm Convergence

If kfn � fk ! 0 as n ! 0, we say fn (�) converges to f with respect to norm
k�k.
Rmk: Di¤erence de�nition of norm leads to di¤erent de�nition of convergence.

Convergence in Probability (Weak Convergence)

fZng is a sequence of random variable. Then Zn converges to a in probability
if

8" > 0; P (fjZn � aj < "g)! 1 as n!1

or
lim
n!1

P (fjZn � aj < "g) = 1

and we denote this as c.

Almost Sure Convergence (Strong Convergence)

Zn converges to a with probability 1 if

P
�n

lim
n!1

Zn = a
o�

= 1

and we deonte it as Zn
a:s:! a.

Rmk: Almost sure event A means P (A) = 1:
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Convergence in r-th Mean

If E jXnjr <1 for all n and E jZn � ajr ! 0 as n!1, then Zn converges to
a in r-th mean.
Rmk: When r = 2, we have convergence in mean square error.

Convergence in Distribution (Weakest Convergence)

fZng is a sequence of random variable with c.d.f. fFng and Z is a random
variable with c.d.f. F . If,

8x; lim
n!1

Fn (x) = F (x)

then sequence fZng converges in distribution to Z and we denote is as Zn
D! Z.

Interrationship between convergences

1. If Zn
P! a, then we have Zn

D! Z.

2. If Zn
a:s:! a, then we have Zn

P! a.

3. If Zn converges in r-th mean, we have Zn
P! a:

4. If Zn converges in k-th mean and for all r � k, we have Zn converges in
r-th mean.

Special relationship between convergences

1. If Zn
D! Z where Z distribution with function which admits a constant

value with probability 1, then Zn
P! a.

2. If Zn
P! Z and P (jZnj � k) = 1 for all n, then Zn converges in r-th mean.

3. If
P1

n=1 P (jZn � Zj > ") <1, for all " > 0, then Zn
a:s:! Z.

Law of Large number and Central Limit Theorem

fXig are i.i.d. random variables and �Xn =
1
n

Pn
i=1Xi

1. If EXi = � then �X
D! �.

2. (WLLN) If EXi = � and V arXi = �2 <1, then �X
P! �.

Proof: First note that E �Xn = � and V ar �Xn = �2=n. By Chebyshev�s
Inequality, we have

P (j�x� �j � ") � �2

"2n
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so that

1� P (j�x� �j � ") � �2

"2n
or

P (j�x� �j � ") � 1� �2

"2n

Taking n!1, we have

lim
n!1

P (j�x� �j � ") � 1:

However, probability is bounded by 1, so we have

lim
n!1

P (j�x� �j � ") = 1.

3. (SLLN) If EXi = �, then �X
a:s:! �

4. (CLT) If EXi = � and V arXi = �2 <1, then
p
n (�x� �)
�

! N (0; 1) :

Rmk: p
n (�x� �)
�

=
1p
n

nX
i=1

�
xi � �
�

�
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Chapter 2

Statistical Inference

2.1 Lecture 14

Estimation

For data set fXigni=1, we wish to estimate �, the unknown parameter of a
parametric model P�.

Point Estimator

Given a sample fXigni=1 and consider a pararmeter �. Let T be a function of
the sample and �̂ = T (X1; : : : ; Xn) is called a point estimator.

Interval Estimator

Given fXigni=1, let T1 and T2 be functions of sample. Let �̂L = T1 (X1; : : : ; Xn)
and �̂U = T2 (X1; : : : ; Xn). If

P
�
�̂L � � � �̂U

�
= 1� �

then
h
�̂L; �̂U

i
is an interval estimator with con�dence probability 1� �.

Unbiasedness

De�ne bias
�
�̂
�
= E

�
�̂
�
� �.

An unbiased estimator �̂ means bias
�
�̂
�
= 0 or E

�
�̂
�
= �.

A biased estimator �̂ means bias
�
�̂
�
6= 0 or E

�
�̂
�
6= �:

33
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Variance of Estimator

V ar
�
�̂
�
= E

h
�̂ � E

�
�̂
�i2

Mean-square Error (MSE)

Combined measure of unbiasedness and variance of estimator.

MSE
�
�̂
�

= E
�
�̂ � �

�2
= E

h
�̂ � E

�
�̂
�
+ E

�
�̂
�
� �
i2

= E
h
�̂ � E

�
�̂
�i2

+ 2E
nh
�̂ � E

�
�̂
�i h

E
�
�̂
�
� �
io
+ E

h
�̂ � �

i2
= E

h
�̂ � E

�
�̂
�i2

+ 2
h
E
�
�̂
�
� �
i
E
h
�̂ � E

�
�̂
�i
+ E

h
�̂ � �

i2
= V ar

�
�̂
�
+ bias2

�
�̂
�

Consistency

If �̂ ! � as n!1, then �̂ is a consistent estimator. In particular,
if �̂ P! �, �̂ is a weak consistent estimator and
if �̂ a:s:! �, �̂ is a strong consistent estimator.

Rmk: �̂ P! � means 8" > 0, P
�����̂ � ���� > "� ! 0 as n ! 1. By Markov

inequality,

P
�����̂ � ���� > "� � E

����̂ � ����2
"2

:

Since " is �xed, E
����̂ � ����2 =MSE ��̂�! 0 as n!1 implies consistency and

so it su¢ ces to show bias2
�
�̂
�
! 0 and V ar

�
�̂
�
! 0 as n!1 for consistency

of �̂.

Su¢ ciency

T is a su¢ cient statistic if the conditional distribution of (X1; : : : ; Xn) given T
is indpendent of �.
Rmk: Informally, it means T summarizes all information (from the sample)
relevant to �.

Factorization Theorem

Let (X1; : : : ; Xn) be random sample from population whose distribution is de-
pendent on �. T = T (X1; : : : ; Xn) is a su¢ cient statistic for � if and only if the
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joint density of X and � can be written as

f (X1; : : : ; Xn; �) = h (T; �)H (X1; : : : ; Xn)

2.2 Lecture 15

Point Estimation of �

Natural candidate: sample mean

�x =
1

n

nX
i=1

xi

Unbiasedness:

E (�x) = E

 
1

n

nX
i=1

xi

!

=
1

n

nX
i=1

E (xi)

=
1

n
n� = �

Hence, �x is unbiased estimator.
Consistency:

V ar (�x) = V ar

 
1

n

nX
i=1

xi

!

=
1

n2
V ar

nX
i=1

xi

=
1

n2

nX
i=1

V ar (xi)]

=
1

n2
n�2 =

�2

n

therefore,

MSE (�x) = bias2 (�x) + V ar (�x)

= 0 +
�2

n
! 0 as n!1

Hence, as �x! �, �x is consistent estimator.
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Point Estimation of �2

Natural candidate: sample variance

s2 =
1

n

nX
i=1

(xi � �x)2

Unbiasedness:

E
�
s2
�
= E

"
1

n

nX
i=1

(xi � �x)2
#

=
1

n
E

nX
i=1

�
x2i � 2xi�x+ �x2

�
=

1

n
E

"
nX
i=1

x2i � 2�x
nX
i=1

xi +
nX
i=1

�x2

#

=
1

n
E

"
nX
i=1

x2i � 2n�x2 + n�x2
#

=
1

n

�
nEx2i

�
� E�x2 = Ex2 � E�x2

Now consider

E�x2 = E

�Pn
i=1 xi
n

�2
=

1

n2
E

"
nX
i=1

xi

#2

=
1

n2
E

24 nX
i=1

x2i +

nX
i 6=j

xixj

35
=

1

n2
�
nEx2 + n (n� 1)ExEx

�
=

1

n
Ex2 +

n� 1
n

(Ex)
2

so that

E
�
s2
�
= Ex2 � E�x2

= Ex2 �
�
1

n
Ex2 +

n� 1
n

(Ex)
2

�
=

n� 1
n

h
Ex2 � (Ex)2

i
=

n� 1
n

�2
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Hence, s2 is biased estimator. The bias would converge to zero as n goes to
in�nity,

bias
�
s2
�

= E
�
s2
�
� �2

=
n� 1
n

�2 � �2

= � 1
n
�2

! 0 as n!1

so that s2 is asympotically unbiased.
Unbiased Version of sample variance would be

�̂2 =
1

n� 1

nX
i=1

(xi � �x)

Its unbiasedness could be proved easily as

E
�
�̂2
�
= E

�
n

n� 1s
2

�
=

n

n� 1E
�
s2
�

=
n

n� 1
n� 1
n

�2

= �2

Rmk: The reason for n� 1 but not n can be explained by degree of freedom or
using the mathematical rank concept.

Distribution of �x

Since �x = 1
n

Pn
i=1 xi, we have

��̂ (t) = � 1
n�xi

(t)

so that if we know the distribution of xi, then we know the distribution of
sample mean.
Even if we don�t know the sample mean, by central limit theorm, we have

p
n (�� �̂)
�

D! N (0; 1) :

Distribution of s2

For simplicity, we assume Xi
i:i:d:� N

�
�; �2

�
.

Then �x = 1
n

Pn
i=1 xi would have distribution N

�
�; �

2

n

�
.
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Notice that
Xi � �
�

� N (0; 1) so that (Xi � �)
2

�2
� �21. We have to show

ns2

�2
=Pn

i=1

(Xi � �)2

�2
� �2n�1

Consider orthogonal transformation of

L =

266666664

1p
n

1p
n

1p
n

� � � 1p
n

1p
2

� 1p
2

0 � � � 0

0 0
. . .

...
...

...
. . .

...
1p

n(n�1)
1p

n(n�1)
� � � � � � 1p

n(n�1)

377777775
such that L (X � �) = Y , Y = [Y1 : : : Yn]T , X � � = [X1 � � : : :Xn � �]T and
Y TY = [X � �]T [X � �] implies

nX
i=1

Y 2i =
nX
i=1

(Xi � �)2

Jacobian matrix is

jJ j =
����dXdY

���� = 1
which implies

Y1 =
p
n
�
�X � �

�
nX
i=2

Y 2i =
nX
i=1

�
Xi � �X

�2
So that

nX
i=1

(Xi � �)2

�2
=

nX
i=1

Y 2i

= Y1 +
nX
i=2

Y 2i

=
p
n
�
�X � �

�
+

nX
i=1

�
Xi � �X

�2
= �21 + �

2
n�1

Therefore, we have the result that

ns2

�2
=

nX
i=1

�
Xi � �X

�2
�2

� �2n�1
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and s2 is independent of �X so that

�̂� �p
�2=n

� N (0; 1)

However, we usually have no information on �2 so we have to replace �2 by �̂2.
The distribution would then be

�̂� �q
�̂2=n

=
(�̂� �) =

p
�2=nq

�̂2=n=
p
�2=n

=
(�̂� �) =

p
�2=nq

�̂2=�2

=
(�̂� �) =

p
�2=nq

1
n�1

Pn
i=1

(xi��)2
�2

=
N (0; 1)q
�2n�1=n� 1

� tn�1

2.3 Lecture 16

Method of Moment (MOM)

Random sample X1; : : : ; Xn and parametric model P� where � = (�1; : : : ; �k) is
k-dimensional parameter.
Population moment

EXr
i =

Z
xrdF� (x) = �r (�)

and sample moment

�̂r (�) =
1

n

nX
i=1

xri

Equate �rst k raw moments: For r = 1; : : : ; k

�̂r (�) = �r (�)

Generalized Method of Moment (GMM)

Instead of equating population moment to sample moment, we impose more
general moment conditions:

E [h (Xi; �)] = 0

where hr = xri � �r (�) is the speical case of MOM.



40 CHAPTER 2. STATISTICAL INFERENCE

We have k parameter as � = (�1; : : : ; �k) and r restriction as h (Xi; �) =
[h1 (Xi; �) ; : : : ; hr (Xi; �)]

T . Therefore,
if k = r, then the system is exactly identi�ed;
if k > r, then the system is under identi�ed;
if k < r, then the system is over identi�ed.
Rmk: under-identi�ed case is not considered usually in economics
When k = r, set

1

n

nX
i=1

h (xi; �) = 0

When k < r, we would try to minimize




 1n
nX
i=1

h (xi; �)







with a weighting martrix W , so that, we have to

min
�

"
1

n

nX
i=1

h (xi; �)

#T
W

"
1

n

nX
i=1

h (xi; �)

#

Properties of GMM Estimator

Exact identication

Consistency: Yes, if it satis�es idendi�cation condition,

�̂ ! �0; � 62 B" (�0) s.t.
1

n

nX
i=1

h (xi; �) = 0

Distribution of �̂: Assuming consistency, using Taylor�s expansion,

1

n

nX
i=1

h (xi; �) +
1

n

nX
i=1

@h (xi; �)

@�

�
�̂ � �

�
+Op

�


�̂ � �


2� = 0
As � ! �, then Op

�


�̂ � �


2�! 0 and we have

1

n

nX
i=1

h (xi; �) +
1

n

nX
i=1

@h (xi; �)

@�

�
�̂ � �

�
= 0

so that �
�̂ � �

�
'
"
1

n

nX
i=1

@h (xi; �)

@�

#�1 "
1

n

nX
i=1

h (xi; �)

#
If Xi are i.i.d., then by Law of large number,

1

n

nX
i=1

@h (xi; �)

@�

P! E

�
@h (xi; �)

@�

�
� D



2.3. LECTURE 16 41

and
1

n

nX
i=1

h (xi; �)
P! E [h (xi; �)] = 0

However, given E [h (xi; �)] = 0, then Xi are mean zero i.i.d., then by central
limit theorem,

1p
n

nX
i=1

h (xi; �)
D! N (0;�)

Hence, p
n
�
�̂ � �

�
D! D�1N (0;�) = N

�
0; D�1�D�1�

Over-indenti�cation

Similar derivation with similar result.

Maximum likelihood estimation (MLE)

(X1; : : : ; Xn) are i.i.d. with density function f (xi; �) and joint density function

f (x; �) =

nY
i=1

f (x; �) :

Consider f (x; �) as function of � given (X1; : : : ; Xn) is called likelihood function.

�̂MLE = argmax
�
L (�)

where L (�) = f (x; �)
Log-tranformation:

` (xi; �) � logL (�) =
nX
i=1

log f (xi; �)

with F.O.C.
@ logL (�)

@�
= 0) @

@�

"
nX
i=1

log f (xi; �)

#
= 0

Rmk 1: GMM consider 1
n

Pn
i=1 h (xi; �) = 0

Rmk 2: score function is de�ned s (x; �) =
@` (x; �)

@�
Rmk 3: MLE depends on whole distribution and GMM just need moment re-
striction
Using GMM method, we know

p
n
�
�̂ � �

�
! N

�
0; I�1 (�)

�
where

I (�) = E

"
@` (xi; �)

@�

@` (xi; �)

@�

T
#

which is called information matrix.
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Properties of MLE

MLE is e¢ cient which implies smallest variance and covariance matrix. For any
other consistent estimator, say ~�, if

p
n
�
�̂ � �

�
! N (0; V )

then V � I�1 (�). Therefore, V � I�1 (�) is semi-positive de�nite matrix.
If �̂ is M.L.E., then �̂ = g

�
�̂
�
is also M.L.E.

MLE for normal i.i.d random sample

Likelihood function would be

`
�
�; �2

�
= �n

2
log 2� � n log � �

P
(xi � �)2

2�2

with F.O.C.

@`
�
�; �2

�
@�

=
2
P
(xi � �)
�2

= 0

@`
�
�; �2

�
@�2

= � n

2�2
�
P
(xi � �)2

2�4
= 0

so that

�̂MLE =
1

n

nX
i=1

xi = �x

�̂2MLE =
1

n

nX
i=1

(xi � �x)2 = s2

2.4 Lecture 17

Con�dence Interval

Let �̂ be point estimate. Con�dence interval
h
�̂L; �̂U

i
3 � with con�dence 1��

if
P
�
� 2

h
�̂L; �̂U

i�
= 1� �

Assuming unbiasedness, we have E
�
�̂
�
= �. Procedure to �nd con�dence

interval:

1. Find the distribution of estimator P
�
�̂ < x

�
= F (x)

2. Find xL and xU such that F (xL) = �=2 and F (xU ) = �=2

3. Then we to �nd P
�
xL � �̂ � xU

�
= 1� � or

P
�
� � xU � � � �̂ � � � xL

�
= 1� �:
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Con�dence interval for normal random sample

C.I. for �̂MLE

Known �2: by i.i.d. property,

�̂MLE = �x � N
�
�;
�2

n

�
so that

�̂� �
�=
p
n
� N (0; 1)

Hence,

P

�
� (�=2) � �̂� �

�=
p
n
� ��1 (1� �=2)

�
= 1� �

or

P

�
�̂� ��1

�
1� �

2

� �p
n
� � � �̂� ��1

��
2

� �p
n

�
= 1� �

We have C.I. to be�
�̂� ��1

�
1� �

2

� �p
n
; �̂� ��1

��
2

� �p
n

�
Rmk: C.I. narrows down if � falls or n grows.
Unknown �2: by i.i.d. property

t�̂ =
�̂� �
�̂=
p
n
� tn�1

with similar result by replace ��1 to d.f. of t distribution.

C.I. for �̂2

Unbiased point estimate would be

�̂2 =
1

n� 1

nX
i=1

(xi � �x)2

Recall the distribution of �̂2 would be

(n� 1) �̂2

�2
� �2n�1

so that, taking c as inverse of d.f. of �2n�1

P

�
c (�=2) � (n� 1) �̂2

�2
� c

�
1� �

2

��
= 1� �

or

P

�
(n� 1) �̂2

c (�=2)
� �2 � (n� 1) �̂2

c (1� �=2)

�
= 1� �
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C.I. for GMM

By C.L.T., we have

p
n
�
�̂ � �

�
D! N

�
0; D�1�D�1�

with standardization,

p
n
�
D�1�D�1��1=2 ��̂ � �� D! N (0; Ik)

so that
�̂� �
�̂=
p
n

D! N (0; 1)

Rmk: In practice, we usually have aympotic C.I. rather than actual C.I.

2.5 Lecture 18

Hypothesis Testing

To formulate a decision rule � such that given the data fX1; : : : ; Xng, it is
possible to infer whether a given hypothesis is supported.

Simple Hypothesis

A hypothesis is simple if together with basic assumption, it speci�es the distri-
bution completely.
Suppose for a parametric model P� where � 2 �, if a hypothesis is � = �0 so
that the distribution is compeletely known, then such a hypothesis is simple.

Composite Hypothesis

Otherwise, it is called a composite hypothesis. With such a hypothesis, we could
not know the distribution completely.

Null hypothesis

Denoted as H0 and it is hypothesis to be tested.

Alternative hypothesis

Denoted as H1 which is usually complement of H0 with respect to sample space
�.
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Testing Statistics

Suppose we have a null hypothesis H0 : � 2 �0 and a testing statistics Tn =
T (X1; : : : ; Tn) 2 A.
Construction of a testing procedure is to set the following rules:

1. If Tn 2 A0 � A, then reject H0:

2. Otherwise, if Tn 62 A0, then accept H0.

Hence, A is called critical region or rejection region and A�A0 is called accep-
tance region.

Decision error
Accept H0 Reject H0

H0 is true correct decision Type I error
H0 is not true Type II error correct decision
Rmk 1: Cannot simultaneously reduce both types of errors.
Rmk 2: Denote � =signi�cance level= P (Type I error) = P (Rejection H0 j H0) :
Rmk 3: Denote � = P (Type II error) = P (Accept H0 j H1) :
Rmk 3: Denote 1�� =power of test= 1�P (Type II error) = 1�P (Accept H0 j H1) :

Choosing testing procedure

1. Speci�es �, which controls type I error.

2. Minimize type II error among testing statistics

P (Type II error) = P (Accept H0 j H1)
= 1� P (Reject H0 j H1)

so that min P (Type II error) is equivalent to max P (Reject H0 j H1) or
to maximize power of the test.

Relationship to con�dence Interval for normal random sam-
ple

Known �2:
Given null hypothesis H0 : � = �0, we have

�� �0
�=
p
n
� N (0; 1)

so that with signi�cance level 1� �, we have

P

������� �0�=
p
n

���� � c� = 1� �
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so that

P

������� �0�=
p
n

���� > c� = �
which is exactly the de�nition of type I error if the testing procedure is to reject
H0 if ������ �0�=

p
n

���� > � (�)
Therefore, the rejection region would be������� �0�=

p
n

���� > � (�)�
Rmk: Con�dence level : 1� signi�cance level
Knonwn �2:
Using �̂ to replace unknown population counterpart:

�� �0
�̂=
p
n
� tn�1

so that the rejection region would be������� �0�=
p
n

���� > c��
where c� is the inverse of distribution function of t distribution.

2.6 Lecture 19

Power function

Power function of testing procedure � is de�ned as

� (� j �) = P (rejecting H0 j �)

For simple hypotheses H0 : � = �0 and H1 : � = �1, given level of signi�cance
�,

� (�0 j �) = �

and the power of test would be

� (�1 j �) = 1� �

Rmk: For two di¤erent testing procedures �1 and �2, one comparison method is
to compare the power of � (�1 j �1) and � (�1 j �2) .
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Neyman-Pearson Lemma

Given a sample fx1; : : : ; xng and likelihood function L (�), consider a simple
hypothesis H0 : � = �0 against simple alternative H1 : � = �1. The following
test is the most powerful test:

Reject H0 if
L (�0)

L (�1)
< c

Rmk 1: Since rejection region A0 is
n
L(�0)
L(�1)

< c
o
, the value of c could be found

when � is given because

P

��
L (�0)

L (�1)
< c

�����H0� = �
Rmk 2: If f is continuous, we have

� = P (A0 j H0) =
Z
A0

f (x; �0) dx;

1� � = P (A0 j H1) =
Z
A0

f (x; �1) dx

Rmk 3: The meaning of most powerful test means that if we have another
testing procedure with rejection region B0, we would have (i) P (B0 j H0) = �
and (ii) P (B0 j H1) � P (A0 j H1).

Signi�cance level of composite null hypothesis

Suppose H0 : � 2 �0 and H1 : � = �1, if for all � 2 �0, such that

P� (Type I error j H0) =
Z
A0

f (x; �) dx = � (�) < �

then, it has signi�cance level of �.

Power of composite alternative hypothesis

Suppose H0 : � = �0 and H1 : � 2 �1, if for all � 2 �1, such that

P� (A0 j �) =
Z
A0

f (x; �) dx = � (�) = 1� �

then, it has power of 1� �.

Uniformly most powerful Test (UMP Test)

Suppose H0 : � 2 �0 and H1 : � 2 �; testing procedures �i, test �� is UMP test
if for all level of � such that for the
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1. same level of signi�cance �;

� (� j �i) � �, for all � 2 �0

2. �� is highest power among �i;

� (� j ��) � � (� j �i) , for all � 2 �1

Monotone Likelihood Ratio

Let fn (x j �) be joint p.d.f. of fx1; : : : ; xng and consider a statistic T =
T (x1; : : : ; xn) if for two values �1 and �2 in �, say �1 < �2, the likelihood
ratio

fn (x j �2)
fn (x j �1)

depends on x only through T (x), and this ratio is an increasing fucntion of T (x)
over the range of all possible values of T (x), then fn (x j �) has a monotone
likelihood ratio in statistics T .

Testing with monotone likelihood ratio

For H0 : � � �0 and H1 : � > �0:
Suppose fn (x j �) has a monotone likelihood ratio in T (x). Let c and � be
constant such that P (T � c j � = �0) = �. Then the test �rejects H0 : � � �0 if
T � c�is a UMP test at the level of signi�cance �.
For H0 : � � �0 and H1 : � < �0:
Suppose fn (x j �) has a monotone likelihood ratio in T (x). Let c and � be
constant such that P (T � c j � = �0) = �. Then the test �rejects H0 : � � �0 if
T � c�is a UMP test at the level of signi�cance �.
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The Appendix

Now the Appendix is empty.
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Afterword

The back matter often includes one or more of an index, an afterword, acknowl-
edgements, a bibliography, a colophon, or any other similar item. In the back
matter, chapters do not produce a chapter number, but they are entered in the
table of contents. If you are not using anything in the back matter, you can
delete the back matter TeX �eld and everything that follows it.
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