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This is note for probability Theory based on classroom notes.
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Introduction

This is intended to be a complete review notes including all statistics courses in
Ph.D exams: Statistics, Econometrics, Time Series and Cross section Analysis.
For now, only statistics is included.
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Chapter 1

Probability Theory

1.1 Lecture 1

Sample Space €2: the collection of all possible outocme of an experiment
Event E: A collection of outcome
Experiment: a process that could be repeated

Set Theory

Terminology: empty set &, finite and infinte sets, disjoint sets.
Operation of Set: union U, intersection N, complement ¢, difference —, subset
C, element of a set €.

Property of Set Operation

1.
2.

3.

Commutative: AUB=BUA, ANB=BNA
Associative: AU(BUC)=(AUB)UC, (ANB)NC=ANn(BNC(C)

Distributive: AN (BUC)=(ANB)UANC),AU(BNC)=(AUB)N
(ANC)

. DeMorgan’s Law: (AN B)° = A° UBC, (AU B)“ = A° N B®

. Reflexive Law: AUA=A, ANA=A

Collection of sets

1.

2.

Partition: Sets A4; (i = 1,2,...,n) where A;NA; = @ (i # j) are paritition
of Sif S =J;_, A;. Note that n can be infinite.

Field: closed under finite union and closed under complementation. Field
A is a collection of sets Ay, ..., A, satisfying the following properties:

3



4 CHAPTER 1. PROBABILITY THEORY

(a) If Al,AQ, .. .,An € A, then U?:l Al € A
(b) If A€ A, then A® € A.

3. o—field: closed under countable unition and closed under complementa-
tion. Field A is a collection of sets Aj, A, ... satisfying the following
properties:

(a) If Ay, A, ... € A, then |J;2, 4; € A.
(b) If A€ A, then A® € A.

If A1, A are o-fields, A; N Ay is also o-field. In general, A4; U As is not
necessary a o-field. However, there exists a unique smallest o-field that
contains all elements of A; and As,.

1.2 Lecture 2

Definition of Probability

(Kolmogorov Axiom of probability) Given a sample space 2 and an associated
o-field that contains subsets of €2, a probability defined as P, is a function (of
sets) from A to [0, 1] satisfying the following properties:

1.VAe A, P(A) >0
2. P(Q)=1
3. Additive Property: For disjoint events Ay, As,... € A,

P(UZ, Ai) = X2, P (A)

Therefore, probability space is defined as (22, A, P)

Property of Probability

L IfU? A, = Qand Ay, ... A, is partition of , then Y | P (4;) = 1.
Proof: Direct application of additive property. P (Q2) = P (U, 4;) =
Z?:1 P (AL) =1

2. P(A%) =1-P(A)
Proof: special case of property 1 when A; = A and Ay = A°.

3. P(@)=0
Proof: special case of property 2 when A; = Q and Ay = &
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4. If A C B, then P (A) < P(B).
Proof: From non-negativity of probability.

B = BNQ=DBn(AUA")
= (BnA)u(BnA°)
= AU(BnA°)

so we have

|
=
|

P(AuU(BnAY))
= P(A)+P(BnA%)
P(A)

Vv

5. 0<P(A)<1

Proof: Monotonicty of probability. Non-negativity is from P (A) > 0 and
bounded by 1 is by second and third axiom.

6. P(AUB) = P(A)+ P(B)— P(ANB)

Proof:
AUB = AU(QNB)=AU[(AUA%)NB]|
= AU[(ANB)U(A°NB)]
[AU(ANB)JU[AU (A° N B)]
AUJAU(A°NB)] =AU (A° N B)
= (ANQU(A“NB)=[An(BUB®)]uU(A°NB)
= (ANB)U(ANB®)U(A°nB)
so that

P(AUB)=P(ANB)+P(ANBY) + P (A°NB)

However, we know that

P(A) = P(AnB)+P(AnB")
P(B) = P(ANB)+P(A°NB)
Hence,
P(AUB) = P(ANB)+[P(A)—P(ANB)]+[P(B)— P(ANB)]

= P(A)+P(B)-P(ANB)
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Inequalities of Probability
1. Bonferroni’s Inequlity:
P(ANB) > P(A)+P(B)—1
Proof: P(AUB)=P(A)+P(B)—P(ANB)>P(A)+ P(B)—1since
0<P(ANB)<1

2. Bode’s inequality:
PUZ A) <3572, P (A)

Proof: Omitted.
3. Extenion of Property 6:

P(AUBUC) = PA+PB)+P(C)—[P(ANB)+P(ANC)+ P(BNC)
+P(ANBNCQC)

or more generally,
P (Ui A) = S0 P (A) =Sy P (AN A (D) 505 ) PN Ad )+

Probability for limit of sequence of events

1. Let A; be an increasing sequence of events (A; C A;11). Define A =
lim A; = U=, Ai. Then P (A) = lim P (A;).

Proof: Define A, = (—o0, x| which is an increasing sequence set in z as
A, C A, if y < z. Hence, by property 4,

P(XeA)<P(XeA)

Define Dy, = Ay — Ag11, Ag = @ and Dy = A;, then Dy is sequence of
disjoint sets. By construction, we have

U?:l A = U?:l D;; Ufil A; = Ufil D;
so that

P (‘lim Ai> = PUZ,4) =P, D) = ,

11— 00

118

P (D)

N
Il
-

— lim S P(Dy) = lim 3 P (A — Api1)

— h h
n OO,L:1 n—oo i=1

n

= lim 3" [P(Ay) ~ P(Ap)] = lim P(4,)

n—oo ;7] n—00

2. Let A; be a decreasing sequence of events (A; D A;y1). Define A =
71— 00 1— 00

Proof: Similar.
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1.3 Lecture 3

Conditional probability

Definition: If P (A) > 0, then the conditional probability P (B | A) is defined as
the proportion of total probability P (A) that is represented by the probability
of P(AN B). In formula,

P(ANB)

P(BIA) =55

Multiplicative Rule
From the definition of conditional probability, we have
P(AnB)=P(B|A)P(A)

or generally, for finite k,

P (N A) = P(AD P (As | AP (Ac | NI A))

Independent Event
Event A and B are independent if
P(ANnB)=P(A)P(B)
or if P(A) >0 and P (B) > 0, then A and B are independent if
P(A|B)=P(A) and P(B| A) = P(B)

For k events, A1, ..., Ay are independent iff for all j = 2, ...,k and (i1,...,4;) C
(1,...,k)
P(A;, N---NA;) :P(Ail)"'P(Aij)

Conditional Independence

A, B,C are events in probability space with P (A) > 0, then B and C are
conditionally independent given A iff

P(BNC|A)=P(B|A)P(C|A)

Law of Total Probability

Consider A; be the partition of €2, that is, E?Zl P(A;) =1 A NA =2,
Ule A; = Q. For any event B € §, we have

P(B) = P(Ule(BuAi)>:ZleP(BuAi)
= YL P(A)P(B|A)
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Bayes Theorem

Let event By,..., By be partition of Q, P(B;) > 0 and event A in the same
space with P (4) > 0, then
P(B;)P(A] B))

PO =S b 5y pa) B)

1.4 Lecture 4

Random Variables

A random variable X is a function X (w) : Q — R such that VB € B, X~ (B) €
F where F is o-field in original sample space and B is the Borel o-field which
is the smallest o-field that contains all open intervals of R.

Random variable tranforms the probability space from (92, F, P) to (R, B, Px)

Distributive Function of a random variable

Also known as cumulative distribution function, or c.d.f.. In symbol, it is

F(z)=Px (X <z2)=Px (X € (—00,z]) VxeR

Properties of c.d.f.
1.0<F(z)<1
Proof: 0 < P(z) <1

2. F (z) is non-decreasing in x.
Proof: A, = (—o0,z] is an increasing sequence set in x, so A, C A, if
z < y. Hence,
P(XeA,)<P(XeA))
3. Define F (—o0) = limy, 00 F' (—n). F (—00) =0
Proof: Taking A,, = (—o0,n],
F(—o00) = lim P(Xe€eA,)=P (X € lim An>

n——oo n——oo

P(XeA )=P(Xe@)=0
4. Define F (00) = lim,, 00 F' (n). F(00) =1
Proof: Similar.

5. F (x) is right continuous, that is

;{Ig)F(a:—Fa):F(x)
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1 .
Proof: let A, = (—oo,y + n] which converge to Ao, = (—00,y]. Then

lim F(c+¢) = lim P(XeAn):P(Xe lim An)

n—oo n—oo

— P(X € (—o0,y]) = F ()

1.5 Lecture 5

Continuous Random Variable

If F (z) is differentiable, we consider the derivative of distribution function F' ()
and define it as the probability density function:

f@) =)

which implies

with following properties:

L f(z)>0

Proof: F (z) is non-negative for all z.

2. [ flz)de=1
Proof: F (o) =1

3. Pla<az<b)=['f(z)dx
Proof: P(x <b)—P(z <a)=F (b)—F (a) = f_boo f(u) du—f_bOo f(u)du=
fbaf(x) dx

Discrete Random Variable

Random variable X takes value on discrete points z1, ..., 2, with P (X = ;) =
p;j. The probability function is f (x;) = p; with the following properties:

L f(z;) =0
2. Z]f(x]) =1

3. F(z) =P (X <a) =Y, <, f (i)
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Distribution of Two Random Variables
Joint Distribution Function of XY

F(z,y)=P(X <2Y <y)
Marginal distribution function of X and Y

Fx(z) = P(X<z)=P(X <zY <) =F(z,00)
Fy(y) = P <y)=P(X <00,Y <y)=F(c0,y)

Properties of Joint Distribution Function

Proof: Any probability value is bounded by 0 and 1

2. F (z,y) is non-decreasing. That is, for all a,b > 0,

Fx+ay+b—F(x+ay) —F(x,y+b)+F(z,y) >0

Proof: Simple Graphic would justify it.
3. F(—oo,y) =0and F (z,—00) =0
4. F(0c0,00) =1
5. F (z,y) is right continuous, that is,

lim F = lim F = lim F =F
o Jn (x+e1,y +e2) lim (z+e1,9) lim (z,y+e2) (z,y)

Conditional Independence

Events A and B are independent if for all Borel set A, B € B,

P(XeA|YeB):P(X€A’Y€B)

P(Y € B)
or
Pxy (A|B) = Px(A) VABEB
PXny(AﬂB) = Px(A)Py(B) VA,BeB

Independence Condition from Marginal Distribution

Given existence of F'(z,y), Fx (z), Fy (y), we have

if and only if X and Y are independent.
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Proof: "Only if": We need to show for all (a1, b1] and (az, b2|, we have
P ((a1,b1] N (a2, b2]) = Px ((a1,b1]) - Py ((az, b2])

Now, we have

P ((a1,b1] N (ag,by]) =

Y

(a1<x<b1,a2<y<b2)

= P(X<b,Y<by)-P(X<a,Y <by) —P(X<b,Y <az)+P(X <a,Y <ap)

= F(bl, ) (ahbz) F(bl,ag) +F(a1,a2)

= Fx (b)) Fy (b2) — Fx (a1) Fy (b2) — Fx (b1) Fy (a2) + Fx (a1) Fy (az2)

= Fx (1) [Fy (b2) — Fy (a2)] — Fx (a1) [Fy (b2) — Fy (az2)]

= [Fx (b1) — Fx (a)] [Fy (b2) — Fy (a2)]

= Px ((a1,b1]) - Py ((az,b2])
"If": Since X and Y are independent, taking A = (—o0,z], B = (—00,y], we
have

P ((a1,b1] N (az, b2]) = Px ((a1,b1]) - Py ((a2, b2])
so that
F(z,y) = Fx (z) Fy (y) Va,y

1.6 Lecture 6

Joint Probability Function

Joint probability function is denoted as f (x;,y;) = P (X = 2, Y =y;) = pij

Marginal probability function for X: P (X =a;) = >, P(X =z;,Y =y;) =

Zj Dij = Pi-
Marginal probability function for Y: P(Y =y;) = > . P(X =2;,Y =vy;) =
> i Pij =P

Conditional probability funciton:

Joint Probability Density Function
If F (z) is differentiable, then
0°F (x,y)
0zdy

is called joint density function with following properties (state without proof):

1. f(z,y) >0

2. f f f(z,y)dedy =1

3.7 [0 f(u,v)dudv = F (z,y)

= f(x,y)
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Marginal Density Fucntion
x@= [ fends o) =[ e

Marginal distribution Fucntion

x Yy
Fx (z) = / fx (u)du; Fy (y) = / fy (v)dv
Conditional Distribution Fucntion

P(X<z|Y=y) = F(zl|y)

= gir%P(Xga:\y—(SSYSy—&-(S)

B hmP(ng,y—(SgYSy—i-d)Qié
I Ply—o6<Y <y+9) 26

ffoo fyyj; f (u,v) dvduQi(s

= lim -
5—0 yyj; fy () dv 26
a F(u,y+0)—F(u,y+0)
' I 55 du
= lim
5—0 Fy (y+0)— Fy (y—9)

20
[2 o [ (u,y) du
Iy ()

Conditional Probability Density Fucntion

_OF(zy) _ f(=zy)

Generalized Multiplicative Rule

f@y)=fx (@) fy (ylz)=fy () fx (@ ]y)
Generalized Law of Total Probability
@ = fewd= [ i@l @

Generalzied Bayes Theorem

ol = Ix (@) fr(y]2)
Tl = =500 v () dy
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Joint Distribution for £ random variable
F(Xla"-7Xk) :P(Xl §x17~"7Xn an)

For discrete case, probability distribution is completely determined by
P(X1 :.’L‘l,...,Xk :xk)
For continuous case,

B OFF (z1,...,21)
f(zl,...,xk)_m

1.7 Lecture 7
Function of Random Variable

A function of a random variable g (X) is also a random variable as long as the
mapping is mearsurable, that is,

VBeB, P(g(X)eB)

is defined if X~* (g7 (B)) € F.

Transformation of Discrete random variable

Discrete Case: For Y =r (X),

PY=y)=Pr(X)=y)=) P(X =)

wr(z;)=y

Transformation of Continuous random variable

Method I (Inversion method): For Y =r (X),

P(Y <y)=P(r(X) gy>:/ f (@) de

wir(z)<y

Method II (Jacobian transformation):
Thm: Suppose P(a < X <b) =1, Y = r(X) is a continuous and monotone
function for a < X < b. When a < X < b, @ <Y < . Then the p.d.f. of Y is
given by

dz
dy
for all & < y < B where f () is pdf of X. In particular,
dz
diy.
. . . . 1 dxr
if r (+) is a decreasing fucntion, g (y) = —f (r~* (y)) o

Y

g()=r1("Ww)

if 7 () is an increasing fucntion, g (y) = f (r~* (y))
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Proof: If r is increasing, then
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Gy =PY <y =Pr(X)<y)=P(X<r ' (y)=F (")
which implies p
g =f (') 5

Similarly, if r is decreasing,

G (y)

which implies

=P <y)

g(y)

—f(r "y

=Pr(X)<y)=P(X>rt(y)=1-F (')

)G

Transformation of Several random variables

X1,...,X, are random variables and the new random variables Y7,...,Y,, are
represented by function
1/1 =T1 (le"'7X7L)
Yoo =rm (X1,...,Xn)
Discrete Case:
PYi=yy,.. Y=y, = > P(X =)
r=(21,....20 )7 (2)=Y;
Continuous Case:
Method I (Inversion method)
G(yla"'vym) - Y1<y13"'7 gym)
- / / f(xla -,an)d.fl"'dl‘n

rjw

Method II (Jacobian matrix)

For case of one-to-one mapping (m = n)

IfP((l‘l,...,
(Xl,...7Xn) and (Yl,...,Yn), }/J = Tj(Xl,...
(Y1,...,Y,) can be obtained from
g(y1a7yn):f($1(y)7
where
dxy
dr| d?.”
dy day

dy1

s ) SY535=1,...,m

Zn) € 5) = 1 and there is a one-to-one correspondence between

,Xn), then the joint p.d.f. of

dxr
dxy
dyn
dx,
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is called the Jacobian of Transformation.

Speical Case I: r is linear combination of X1,...,X,.
Y1 Xl
: =Y=AX=A :
Y, Xn
and A is non-singular, then we have
d
X=aly; || =4y
dy
so that
1

9(y) = T (A™1y)

Useful Transformation

X1,..., X, ~F (), f(z;) areiid, Y,, = max {X1,..., X, } and Z,,

Now,

P(Y,<y) = Pmax{Xy,...,Xn}<y)
= P(X;<y,....,Xn <)
= P(X;<y)...P(X,<y)
= [F]"=Gy)

and if X; are continuous,

Now,
P(Z,<z) = Pmin{X,...,X,}<z)
= 1—P(min{Xy,...,X,} > 2)
= 1-P(X1>2.., Xn > 2)
IR
= 1-[1-F(()]"=H(y)
and if X; are continuous,
ne) =T )
Ply<Xy,...,.Xp,<2) = FY,<y,Z,<2)

= PYa<y—-PYn<y Z,>z)
= [F]"-[F(y) -F@E)"

=min {Xq,...

2 < Xp <y)
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Transformation by Convolution

X4 and X5 are two random variables and let Y = X; + X5 and Z = X5 so that

- 0] -or i 1

where

1
g(y,2) = f(m(-),wz(-))m

= f(y—Z,Z)

so that

g(y)=/f(y—z,Z)dz

Furthermore, if X; and X, are independent, then

g(y)z/fl(y—Z)fa(Z)dz

1.8 Lecture 8

Expectation of Discrete Random Variable
For a discrete random variable X taking values {x; };]:1,
tion P (X = ;) = p;, the expectation of X is defined as

with probabilility func-

J
EFX = Zj:1 Zjipj

Rmk: For EX < oo, we need to have Z}le || p; < oo.

Expectation of Continuous Random Variable

The expectation of continuous random variable X with pdf f (z) is
(o]
EX = / xf (z)dx
— o0

Rmk 1: EX exists if [*_|2| f (z)dz < oo.
Rmk 2: Since dF (X) = f (z) dz, we have EX = [*_xdF ().

Properties of Expectation

Rmk: For the following proof, we only show the continuous case as discrete case
is similar.
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1. If P(X =¢) =1, then EX =c.

Proof: Immediate from definition.

2. If EX exists, then E (¢X) = ¢X.

Proof: As constant can be taken out from summation/integral.
o0 (o)
/ cf(ac)dm:c/ f)de=c

3. If Y =aX +band EX exists, EY = aEX + b.

Proof: EY exists because

YI<lallX]+ b= [ ldF ) <l [ laldF @) + b < oc
—00 —0o0

4. Y = X1 + X2, EX; and EXj exist, then FY = EX; + FEXo.

Proof: EY exists because

/ |x1 + xo| f (21, 22) de1das

// (lz1] + |z2|) f (21, 22) dr1dXs

/ |z1] f (21, 22) dz1dae —|—/ |za| f (z1, 22) dz1de
/|x1|f(931)d931 +/|m2|f(x2)d:132 < 00

IN

where the result is just additive property of integration.

5. Linear property: If EX; exists, F (a1 X1+ -+ ar Xy +b) = a1 EX; +
raprEXE+ b

Proof: General case of property 4.

6. If P(X >a) =1, ais a constant, then £X > a.
Proof:

EX = /xdF(x)L<axdF(z)+L>axdF(x)
- /mxdF(x)z/ adF (z) = aP (X > a) = a

z>a
7. IfP(X>a)=1and EX =a, then P(X >a)=0and P(X =a) =1.
Proof:
EX = /xdF (z) = / xdF () +/ xdF (x)
z<a

r>a
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which implies
a+te o0

a = lim zdF (x) +/ xdF (x)

e—0 ate

and this can only be true if P(X >a)=0and P(X =a) = 1.

1.9 Lecture 9

Expectation of function of random variable

Elg ()] = /m ¢ (z) dF ()

— 00

Moments

Special Case I: g (X) = X", we call EX" the r-th raw moment of X.
Thm: If EX" exists, then for any 0 < s <r, EX® < 0.
Proof:

/|x|SdF(x) - /$<1 x|SdF(x)+/|$21|x|SdF(m)
/w<1 dF (x)+/$|>1 |z|* dF ()
< /z<1dF(x)+/z|>1 e[ dF (z) < oo

Rmk 1: If £ moment does not exist, (k + 1)th moment will also not exist.
Rmk 2: When r = 1, we call EX as mean of distribution.

Special Case II: g(X) = (X — EX)", we call E(X — EX)" the r-th central
moment of X.

Rmk 1: EX" exists then F (X — EX)" also exists.

Rmk 2: E(X —EX)" = ([)EX" - ()EX"'EX + (}))EX"?EX" + -+ +
(-1 () EX".

Rmk 3: When r = 2, we call E (X — EX)? the variance of distribution.

IN

A

Properties of Variance
1. Y =aX +0b, then VarY = a?VarX
Proof: From defintiion
2. If VarX =0, then there exists ¢ such that P (X =¢) =1

Proof: Var (X) = 0 implies F (X — EX)? = 0. Then this means for all
X, X = EX, so that all X would always be equal to one constant, say c.
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Skewness and Kurtosis

Skewness: Measure the symmetry of the distribution:

_ E(X - EX)’
==
Kurtosis: Measure the tail of distribution:
E(X — EX)*
o=

Median and Mode

Median m is defined as P (X <m) = P (X >m) = 0.5.
For continuous variable,
m = F~1(0.5)

where F~! is inverse function of distribution function F.
Mode p, is defined as f (py) = supy f (X).

Quartile, Interquartile range and Range

If F (z) is strictly monotone, F~! (1) is called 7-th quartile of X where 7 € [0, 1]
We call Q (1) = F~1 (1) as quartile function
In general, the 7-th quartile of a distribution is defined as

Q. (1) =inf{x: F(x) > 1}

when 7 = 0.5, @, (7) is the median.

when 7 =0.25,0.5,0.75, Q.. (7) are quartiles.

when 7 =0.2,0.4,0.6,0.8,Q, (7) are quintiles.

when 7 =0.1,0.2,...,0.9, Q. (7) are deciles.

Interqartile range IQR is defined as IQR = @, (0.75) — @, (0.25)
Range is defined as range = supz — infx = Q. (1) — Q.. (0).

Bivariate Moments
L. EXY = [[ayf (z,y)dedy = [[zydF (z,y)
2. BEg(X.Y) = [g(z,y)dF (z,y)
3. E(X"Y?) is called the product of raw moment of order r and s.
4

. E[(X — EX)" (Y — EY)?] is called the product of central moment of order
r and s.

5. Particularly, when r = 1, s = 1, we have

Cov(X,Y) = E[(X-EX)(Y —EY)]
EXY — EXEY
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6. Furthermore, if X and Y are independent, then Cov (X,Y) = 0.
Proof: Cov (X,Y)=EXY — EXEY = EXEY — EXEY =0.

7. If cov (X,Y) =0, then X and Y are uncorrelated.

Correlation
cov (X,Y)
VVarX~VarY

Thm: Correlation coefficient is bounded by 1, |corr (X,Y)| < 1.
Proof: By Cauchy-Scharwz inequality,

corr (X,Y) =

[E(AB))” < EA’EB?
Taking A=X — EX and Y =Y — EY, we have
E[(X-EX)(Y-EY)’<E(X —EX)’E(Y —EY)?

or
[cov (X,Y)) < VarX - Vary

so that
2

o0 (L V)P

VarX -VarY —

which implies
lcorr (X,Y)] <1

1.10 Lecture 10

Generating Function

Given a random variable X, generating function Gx (t) is defined as
Gx (t) = Eg (@) = [ 9(0.0)dF (@
Probability Generating Function

gz, t) = t°
Pe(t) = / AP (z) = B"
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Moment Generating Function

g(z,t)=e®

Mx (t) = Ee'* = /et‘rdF (x)

For small value of ¢,

t J
e =14tr 4+ ( ac')
7!
so that ‘
Mx(t)= [ ) —dF(z) =} - [ 2/dF (2)
7=0 J: 7=0 J
which implies
J )
ot t=0

Characteristic Function

g(x,t) = e

by (t) = / " dF (z) = BEe'®

Rmk 1: Characteristic Function is always well-defined.

/emdF () < o0

since
e = costr + isintx

so that
jeite| = 1.

Rmk 2: If X is vector of random variable, the c.f. would be, for example, say
X = (Y7 Z)
Ox (t,5) = BTV +52) = | (1Y ¢157)

Properties of Characteristic Function

1. There is one to one correspondence between c.f. and p.d.f..

2. If the r-th moment exists, then

1 0¢x (1)

EX" =
i otr

t=0
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Proof:

8¢6)§T(t) _ ir/mreitach (37)

= ir/x’"dF(x) ast — 0o
i"EX

3. Relationship between m.g.f. and c.f.:
ox (t) = Mx (it)
Proof: From definition, Mx (t) = Ee!* and ¢ (t) = Ee’X
4. Linear function of random variable:

Garpxt =e""dx (bt)

Proof: From definition, @, ,x () = Eet(@+bX) = ¢ita pei(th)X = citag ()
5. If X and Y are independent random variables, we have

Oxiy (t,8) = ¢x (t) Py (5)

6. 1t 20x (@)

oG exists, then

t=0

ElIX" <o if r is even
E|X™ ! <oo ifrisodd

7. If |X7| < o0, then

k BEXJ .
bx (t) = X —— (it) + o (*)
=0 J
where o (tk) is defined as
k
lim O(t, ) _o
t—oo tk

8. The density function f (z) can be obtained by inverse transformation

fl@)= = ety (1) dt.

:%700
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1.11 Lecture 11

Normal Distribution

The density function is

TN
- . o2

forallz € R, —o0 < p < 00 ,0 > 0 with the mean and variance equal to
EX =pu; VarX =E(zx—p) = o>
The rth central moment is

0 if r is odd
(2k—1)(2k—3)---3-1-0%% ifris even and r = 2k
0 if r is odd
(2k—1)(2k—3)---3-1 if ris even and r = 2k

EX—p)" =
= ¢,0" where ¢, = {

The mgf and cf are
Mx (t) = exp {Mt+ 02;2} P Oy () =exp {iut = ”2;2}

Standard Normal Distribution
When g = 0 and 02 = 1, then we call the distribution to be standard normal
and the p.d.f. and c.d.f. are denoted by ¢ () and ® (z) respectively.
Property of Normal distribution

1. fX~N (,u7<72), thenY =aX +b~ N (au+b7a2a2)

Proof: ¢y (1) = dyx s (1) = eitbéy (at) = eit? [eiu(at)foQ(at)2/2:| — pilaptb)t—(ac)?t?/2

2. If Xq,..., X~ N (Mi,az) are i.i.d., then

(3

k k k
ZXwN(zm,zc?).
) =1

i=1 i=1

Proof: Let Y = > x; fori = 1,...,k of ¢, (t) = exp {iuit — U?Qtz } Since

x; are independent,

oy (t) ﬁ oy, (t) = f{ exp {iuit _ Ui; }

=1 =1

k 25k 52
exp it . u; — Foimoi .
=1 2
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3. Y =a+ " b, then Y ~ N (a b, SF bfa?)

Proof: Combination of 1 and 2 proof.

Multivariate normal distribution

X; (t=1,...,p) are N (,ui, 03) with covariance matrix 3,y , where
o1 012 - O1p
Y 021
Opl o Opp

such that o;; = o7 and 05 = cov (X;, Xj).
Let X = (X1, Xo,. ..Xp)T is a p-dimensional normal distribution with mean

W= <M17 Moy 7up)T and covariance matrix Y. The joint density of X is

f(z)= Mexp{—;(x—u)TZ_l (x—,u)} for x € R?

and we denote this by X ~ N (p, X).
Prop: If X ~ N (p,X), then AX ~ N (A,LL,AEAT)
Proof: Omitted.

Distribution dervied from Normal
Lognormal Distribution

X is lognormal if Y =log X ~ N (p,0?)
cf is ¢y (t) = exp {ipt — 02t?/2}
m.gf. Mx (t) = EX" = exp {ut + 0?t?/2}

EX =exp (p+0?/2) and VarX = e2nto’ (6‘72 — 1)

x? Distribution

If X; (i=1,...,p) are independent N (0,1), then ¥ = Y2 | X? is called a
random variable of x2 distribution with p degree of freedom, which is denoted
as Y ~ x2.

The following are properties of chi-square distribution:

1. If Z; ~ N (u;,0?) are independent, then

1
P Zi— i\’
S (55r) ~

i
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2. EX =p and VarX = 2p. Other higher moments can be found be using
the formula:

0 if r is odd

EX —p) =eo Wherecr:{ (2k—-1)(2k—3)---3-1 ifriseven and r =2k

3. If Y1 ~ x%(p) and Y2 ~ x% (q), Y1 and Y3 are independent, then Y; + Y5 ~
X* (p+a).
Non-central x2- distribution
If X; are independent N (p,,1) and p; # 0, then
P P
v=$xied (L)
i=1 i=1

where >°%_, pi7 is called non-central parameter.
Properties: For Y ~ X,% (A, EX =p+ Xand VarX = 2p + 4\
Proof:
Y = ©X7 =X —m+m)
= 2 (X — )+ 0 42X — ) g

= DX )+

Student’s t distribution
If X ~N(0,1), Y ~ x; and X,Y are independent, then

X
Y/p

has t distribution with degree of freedom p.
2 -5

Rmkl: f(z) =¢p (1 +Z where c is a constant depend on p
p

Rmk2: ¢, — N (0,1) as p — oo.
Rmk3: For X ~ t, having moments up to order (p — 1),

1. EX" does not exist when r > p.

2. For r < p,
r/2F (r+1) T (P—T)
r_ P
ST
2 2
where
[(a) = [ 2z e "da.

3. EX:0forp>1andVarX:ﬁforp>2.
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F-distribution
If Y1 ~ x2,, Ya ~ X2 are independnet, then

Yl/m

an:
) }/2/,”‘

Rmk1: For r <n/2, EX" exists.
2n? (m+n—2)

Rmk2: For n > 2, EX = ; Forn >4, VarX = 5 ; For
n—2 m(n—2)"(n—4)
n—oo, FEX =1
2
X .
Rmk3: ¢ = xg}q ~ F(1,q); This can be seen by Var (t;) = ;43 — lasq — oo
and E (t4) = 0.
Other Distribution
Gamma Distribution
fx) = L/\txt_le_m'x >0,t>0
ING) e
EX = L VarX = *
= ¥ =1

Bernoulli Distribution

Y- 0  with probability p
~ 1 1 with probability 1 —p

so that
1—x

p(z)=p"(1-p)

Binomial Distribution

Yy = X; + Xo+ -+ X,, where X; are i.i.d. Bernoulli distribution, then
Y ~ B(n,p)

Possion Distribution

X takes the value from 0,1,2,---. The probability function is

e AN
P(X=x)= o
Indicator Fucntion
For event A € Q, I, is defined as
I.— 0 wegA
4711 wed

Rmk: This is speical case of Bernoulli.
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1.12 Lecture 12

Markov Inequality

Let g () be a non-negative function of a random variable X and E [g (X)] exists,
then for any ¢ > 0, we have

Elg(X)] = e

Y

z)dF (x) = x)dF (x z)dF (x
/g<) () /ngu <>+/ g (x) dF (z)
/ g(x)dF(x)Z/ cdF (z) = cPg(X) >

g(z)>c g(z)>c

If X is non-negative, that is P (X > 0) = 1. Then, let g (X) = X, we have
EX
P(X>c)<—.
c

In general, consider g (x) = |z|, then
ElX|

P(X|2 )< =

Chebyshev’s Inequality
Consider g (z) = (z — p)* where = EX, then we have

E [(x - “)2} _ VarX

Ple—p’ =] <

c c
Furthermore, taking ¢ = 202 then,
2
2 g 1
P{(m—u) >520'2} < 252 2
which implies
1
Pllz —pl zeo] <

Generalized Markov Inequality

Let g () be a non-negative function on R and g (-) is non-decreasing on the range
of a random variable z. Then

Elg(2)]
P(z>a)< (@)
Proof: .
Pleza) = Plo(:) 2 g(0) < T4

where the last step is application of Markov inequality.
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Berkstein Inequality
Let g (t) = e for b > 0, then

P(z>a)< e~ WEeb < li)r>1f e~ W Eeb?
>0

Corollory 1: If X ~ Binomial (n,p), then P (|z — np| > ne) <2
Corollory 2: If u; are independent r.v. and P (u; <b) = 1, v
then for all @ > 0, we have

= ZZL 1E(“?)’

Jensen’s Inequality
If g is convex on S C R and S is convex and closed, P (X € §) =1, E[g (x)] < o©
and FX < oo, then
Elg(X)] =z g[E(X)].
Covariance inequality

Cauchy-Schwarz Inequality
(EXY)? < EX?EY?
Holder’s Inequality

1 1
If p,¢g>1and — + — =1, then
p q

E|XY| < (B|XP)"" (B|X)"/"
Notation: || X||, = (E |X?|)!/? called the L, norm so that

XY < {111, Y1l

Minokowski Inequality

For p > 1,
E(X +Y[)'" < (BIXP)Y? 4 (B|X7)"/

or
X+ Y, <IIX], + Y1,
Lyapunov’s Inequality

For any p > ¢ > 0,
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Point-wise Convergence

We say f,, converge to f point-wisely if for all z, f, (z) — f (z).

Rmk: Not enough to ensure asymptotic property. Need stronger condition. We
need to define distance d between f,, and f to be less than a very small number.
If d is norm, it is norm convergence.

Norm

Let V be a collection of functions. [-|| is a norm of V' if
L |fl[>0foral feV
2. |IfIl=0iff fis a zero function
3. Va e R, Vf eV [af]| = lal [|f]]

4V geVilf+gl <71+ llgl

Rmk: If V satisfies these four properties, we say V' is endowed with norm.

Norm Convergence

If ||f — fIl = 0 as n — 0, we say f, (-) converges to f with respect to norm
-
Rmk: Difference definition of norm leads to different definition of convergence.
Convergence in Probability (Weak Convergence)
{Z,} is a sequence of random variable. Then Z,, converges to a in probability
if

Ve >0,P({|Z,—a|l|<e}) > lasn— o0

or
lim P({|Z, —a| <e}) =1

and we denote this as c.

Almost Sure Convergence (Strong Convergence)

Z,, converges to a with probability 1 if

P ({7 =e}) =1

and we deonte it as Z,, =5 a.
Rmk: Almost sure event A means P (A4) = 1.
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Convergence in r-th Mean

If E|X,|" < oo for all n and E|Z,, —al” — 0 as n — oo, then Z,, converges to
a in r-th mean.
Rmk: When r = 2, we have convergence in mean square error.

Convergence in Distribution (Weakest Convergence)

{Z,} is a sequence of random variable with c.d.f. {F,} and Z is a random
variable with c.d.f. F. If,

Ve, lim F, (z) = F(z)

n—oo

then sequence {Z,,} converges in distribution to Z and we denote is as Z,, 2z

Interrationship between convergences

1. If Z, Lt a, then we have 7, By
2. If Z, “3 a, then we have Z, L

3. If Z,, converges in r-th mean, we have Z,, L
4. If Z,, converges in k-th mean and for all r < k, we have Z,, converges in

r-th mean.

Special relationship between convergences

1. If Z, A Z where Z distribution with function which admits a constant
value with probability 1, then Z, L

2. If Z, L Zand P (1Zn] < k) =1 for all n, then Z,, converges in r-th mean.

3.1 Y00 P(|Z, — Z| > €) < o0, for all € > 0, then Z,, “3 Z.

Law of Large number and Central Limit Theorem

{X;} are i.i.d. random variables and X,, = 1 3" | X,

1. If EX; :,uthen)_(gu.

2. (WLLN) If EX; = p and VarX; = 02 < oo, then X 5 p.

Proof: First note that EX,, = p and VarX, = o2/n. By Chebyshev’s

Inequality, we have
2
o
P(|lz — > < —
(7 -ul>2)< 3
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so that
o2
1—P(lz—pl<e) < —
(-l <)< 5

or

o2
Pllz—ul<e)>1-— —
(z-pl<e)21- 5

Taking n — oo, we have

lim P(|z —p|<e)>1

n— 00 -

However, probability is bounded by 1, so we have

lim P(|z —p| <e)=1.

n—oo

3. (SLLN) If EX; = u, then X “%
4. (CLT) If EX; = p and VarX; = 0% < oo, then

V@ —p)

. (0,1).

Rmk:

Vit :;E_ (2)
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Chapter 2

Statistical Inference

2.1 Lecture 14

Estimation

For data set {Xi}?zl, we wish to estimate 6, the unknown parameter of a
parametric model Py.

Point Estimator

Given a sample {X;}!" | and consider a pararmeter 6. Let T be a function of
the sample and 6 =T (X1, ..., X,,) is called a point estimator.

Interval Estimator

Given {X;}!_,, let T1 and T, be functions of sample. Let 0, =T (X1,...,Xn)
and Oy = Ty (X1,..., X,). If

P(éLgegéU)=1—a

then [é L, @U] is an interval estimator with confidence probability 1 — «.

Unbiasedness
Define bias (é) =F (9) — 0.
An unbiased estimator  means bias (9) =0or F (9) =4.

A biased estimator 6 means bias (9) #0or (9) #0.

33
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Variance of Estimator
~ ~ N 2
Var (9) —E [9 _E (9)]

Mean-square Error (MSE)

Combined measure of unbiasedness and variance of estimator.

MSE(@) = E(é—9)2
- E[A—E(é)—%E é)—ar
- E{A—E(éﬂz—i—QE{[e—E(@)} [E(é)—e}}ﬂz[é—er
- E[é—E(@)r+2 E(@)—H}E[@—E(@)}+E[9—0r
= Var (9)4—[9@'@32 9)

If  — 6 as n — oo, then 6 is a consistent estimator. In particular,

it & 0, 0 is a weak consistent estimator and
if 9 “3 0, 0 is a strong consistent estimator.

Rmk: 6 2 0 means Ve > 0, P(‘@—O‘ >8) — 0 as n — oo. By Markov
inequality,

E

Pli-o>e) < L7

£2

~ ’ 2

o 2 o
Since ¢ is fixed, F ‘9 - 9‘ =MSE (0) — 0 as n — oo implies consistency and

so it suffices to show bias? (@) — 0 and Var (é) — 0 as n — oo for consistency

of 0.

Sufficiency

T is a sufficient statistic if the conditional distribution of (Xi,...,X,,) given T
is indpendent of 6.

Rmk: Informally, it means T summarizes all information (from the sample)
relevant to 6.

Factorization Theorem

Let (X1,...,X,) be random sample from population whose distribution is de-
pendent on 0. T =T (X,...,X,,) is a sufficient statistic for 6 if and only if the
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joint density of X and 6 can be written as

F(X1,.. X010) =h(T,0) H(X1,...,X,)

2.2 Lecture 15

Point Estimation of u

Natural candidate: sample mean

Unbiasedness:
i=1
i=1

Hence, Z is unbiased estimator.
Consistency:

Var(z) = Var (711 Z%)

therefore,

MSE (z) = bias®(z)+ Var ()
2

0+U— —0asn— oo
n

Hence, as £ — u, & is consistent estimator.

35
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Point Estimation of o2

Natural candidate: sample variance

Unbiasedness:

Now consider

so that

E (32)

1 n n n
EE Zx? — 23’02@ +Zx2
1=1 i=1 =1
1 n
ﬁE fo - 2nz? 4+ nz?
i=1

% (nEx}) — Ez* = Ex* — E2°

5 [2?1 }
n 2
>
=1
%E lez + lezj

i=1 i#]

3

1
EE

% [nEx® +n(n— 1) ExEx]

n—1

1
ZEa®+ (Ex)?
n

Ez? — Ez?

Ex? — [lExQ + (Ex)z}
n

n—1

[Em2 - (Ex)z}
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37

Hence, s? is biased estimator. The bias would converge to zero as n goes to

infinity,

bias (32) =

—

so that s? is asympotically unbiased.

FE (52) — o2
n— 102 2
n
e
n

Unbiased Version of sample variance would be

2 1

g =

n—1

n

> (zi—7)

i=1

Its unbiasedness could be proved easily as

E(%) =

(o)
B (%)

n—1
n n—1

o2
n—1 n

0,2

Rmk: The reason for n — 1 but not n can be explained by degree of freedom or

using the mathematical rank concept.

Distribution of =

i 7— L\ .
Since T = - Y ,_; ;, we have

¢p (t) =

so that if we know the distribution of x;, then we know the distribution of

sample mean.

Even if we don’t know the sample mean, by central limit theorm, we have

Mﬂ]\/‘(o’l).

g

Distribution of s
i.d.

For simplicity, we assume X; RN (u, 02).

Then Z = £ 37" | x; would have distribution N (u, "%)
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X; - X — p)? 2
Notice that PonN (0,1) so that # ~ x3. We have to show % =
o o o
(Xi —p)°
E?:l Laig ~ X%—1
Consider orthogonal transformation of
rooL 1 1 1
v Vn Vn Vn
=+ - 0 0
V2 V2
L= 0 0
! L
_\/n(n—l) \/n(n—l) v/n(n—1)

such that L(X —p) =Y, Y =W1.. V", X —p=[X; —p... X, — )" and
YTY = [X — y|" [X — 1] implies

n

PIRGED SIE I

i=1

Jacobian matrix is

dX
1= |57 =1
which implies
i = \/E(X*ﬂ)
S = Y (% -X)
i=2 i=1

So that
n X _ 2 n
Z ( 102 .u) _ ZYLQ
i i=1
= ni+ Zn:Yf
i=2

= V(X —p)+ ) (X - X)°

i=1
= Xi+xo1

Therefore, we have the result that

2 (X, - X)?
%:Z%Nﬁ_l

i=1
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and s2 is independent of X so that

2

. . 2
However, we usually have no information on o2 so we have to replace o2 by &°.

The distribution would then be

e N Ve DV ANA AL
5% /n \/ 62 /n/\/o%/n
(i —p) [/ o/n
\/62 /o2
(i —p)/\/o*/n
Yk o, G
N (0,1)

= @ —_— ~

n—1
A/ X%—l/n -1

2.3 Lecture 16
Method of Moment (MOM)

Random sample X7, ..., X,, and parametric model Py where 6 = (61, ...,0;) is
k-dimensional parameter.
Population moment

EXT = / 2" dFy () = i, (6)
and sample moment

e (0)= > ar
=1

Equate first k£ raw moments: For r =1,...,k
fi. (0) = p,. ()

Generalized Method of Moment (GMM)

Instead of equating population moment to sample moment, we impose more
general moment conditions:

ETh(X;,0)] =0

where h, = T — p,. (0) is the speical case of MOM.
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We have k parameter as 0 = (64,...,0;) and r restriction as h(X;,0) =
[h1 (X:,6), ... he (X;,0)]". Therefore,

if k = r, then the system is exactly identified;

if kK > r, then the system is under identified;

if k < r, then the system is over identified.

Rmk: under-identified case is not considered usually in economics

When k = r, set

n

%Zh(xi,e):o

i=1
When k£ < r, we would try to minimize

n

=3 h(6)

i=1

with a weighting martrix W, so that, we have to

mln[ Zh Zi, 0 ] W[;ih(%,ﬁ)]

Properties of GMM Estimator

Exact identication

Consistency: Yes, if it satisfies idendification condition,
0 — 6,0 & B ( thl, )=0

Distribution of 6: Assuming consistency, using Taylor’s expansion,

iih<xi79)+;iw(@_g)+op (H@_e;f) _0

i=1 i=1

As § — 0, then O, (Hé - 9H2> — 0 and we have

P20+ 52O (0-0) <o
so that

5-0)- Lzah?é’ 2] i)
i=1

i=1
If X; are i.i.d., then by Law of large number,

Zah x;, 0 [ah(gé,)}

D
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and
n

> h(4,0) 5 Eh(2:,0)] =0

i=1

However, given F [h(z;,0)] = 0, then X; are mean zero i.i.d., then by central
limit theorem,

3=

1

S h(zi,0) 2 N(0,5)
n
=1

B

Hence,
vn (é — 9) B p7IN(0,%) =N (0,D'ED™)

Over-indentification

Similar derivation with similar result.

Maximum likelihood estimation (MLE)
(X4,...,X,) are i.i.d. with density function f (x;,6) and joint density function

f(@:0) =[] f (:0).
i=1
Consider f (x;0) as function of 8 given (X, ..., X,,) is called likelihood function.
éMLE = argmgxxL (9)
where L (0) = f (x;0)
Log-tranformation:

l(z;,0) =logL(9) = Zlogf (x;,0)

with F.O.C.

Odlog L (0) 0 |w— 4 B

Rmk 1: GMM consider 1 3" | A (z;,60) =0
ol (x,0)

Rmk 2: score function is defined s (x,0) =

Rmk 3: MLE depends on whole distribution and GMM just need moment re-
striction
Using GMM method, we know

Vi (0-0) = N (0,17 (6))

where

Iw):Elaegé,e)aﬁ(gé,e) ]

which is called information matrix.
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Properties of MLE

MLE is efficient which implies smallest variance and covariance matrix. For any
other consistent estimator, say 6, if

\/ﬁ(@70> S N(0,V)

then V > I71(0). Therefore, V — I~ () is semi-positive definite matrix.
If § is M.L.E., then 3 = g (é) is also M.L.E.

MLE for normal i.i.d random sample

Likelihood function would be

2
2y 1 > (i —p)
E(u,a)ffglog%rfnlogof 957
with F.O.C.
ot (m,0%) 2> (@i—p) _
au o2
o(po®) _  n T@-p _
Oo? o 202 204 o
so that
N 1< _
KymMLE = n Ti=2
i=1
1 n
Grre = - (w—13)° =5
=1

2.4 Lecture 17

Confidence Interval

Let 6 be point estimate. Confidence interval [@ L @U} 5 0 with confidence 1 — «
if o
P(0€|0n.bu])=1-0a

Assuming unbiasedness, we have F (@) = 0. Procedure to find confidence

interval:

1. Find the distribution of estimator P (9 < x) = F(xz)
2. Find 2z, and zy such that F (z1) = «/2 and F (xy) = «/2

3. ThenwetoﬁndP(ngégmU)zl—aor

P(Q—xUSG—égﬁ—xL)zl—a.
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Confidence interval for normal random sample

C.I for iy 15
Known ¢2: by i.i.d. property,

R o?
Prvipe =T~ N (M, n)

so that

Hence,

or
P A—©*1(1—9)i< <A—¢>*1(9)i —1-
(“ 2) yn = H=H 2) Jn @
We have C.I. to be

o (1_ 9 g1 (D) O
{“ ( 2) Vs (2) NG
Rmk: C.I. narrows down if o falls or n grows.

Unknown o2: by i.i.d. property
p—r
o/ "

with similar result by replace ®~! to d.f. of ¢ distribution.

th

C.I. for 62

Unbiased point estimate would be

. 1 _
02:n_12(xi—$)2

i=1

Recall the distribution of 62 would be

(n—1) & ~ 2
o2 n—1

so that, taking c as inverse of d.f. of x2_;

P<c(a/2)<(n_ai)&2<c(l—§)>:1—a

(n—1)6° 2 (n—1)6° C1—g
P( c(a/2) = Sc<1—a/2>) !

or

43
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C.I. for GMM
By C.L.T., we have

so that
b= p

G/v/n

Rmk: In practice, we usually have aympotic C.I. rather than actual C.I.

B N(0,1)

2.5 Lecture 18

Hypothesis Testing

To formulate a decision rule § such that given the data {Xi,...,X,}, it is
possible to infer whether a given hypothesis is supported.

Simple Hypothesis

A hypothesis is simple if together with basic assumption, it specifies the distri-
bution completely.

Suppose for a parametric model Py where 6 € ©, if a hypothesis is § = 6 so
that the distribution is compeletely known, then such a hypothesis is simple.

Composite Hypothesis
Otherwise, it is called a composite hypothesis. With such a hypothesis, we could
not know the distribution completely.

Null hypothesis

Denoted as Hy and it is hypothesis to be tested.

Alternative hypothesis

Denoted as H; which is usually complement of Hy with respect to sample space

©.
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Testing Statistics

Suppose we have a null hypothesis Hy : § € Oy and a testing statistics T,, =
T(Xy,...,T,) € A
Construction of a testing procedure is to set the following rules:

1. If T,, € Ag C A, then reject Hy.

2. Otherwise, if T,, & Ag, then accept Hy.

Hence, A is called critical region or rejection region and A — Ay is called accep-
tance region.

Decision error

Accept Hy Reject Hy
Hy is true correct decision | Type I error
Hy is not true | Type II error correct decision

Rmk 1: Cannot simultaneously reduce both types of errors.

Rmk 2: Denote o =significance level = P (Type I error) = P (Rejection Hy | Hp) .
Rmk 3: Denote 5 = P (Type II error) = P (Accept Hy | Hy).

Rmk 3: Denote 1—5 =power of test = 1— P (Type II error) = 1—P (Accept Hy | Hy) .
Choosing testing procedure

1. Specifies «, which controls type I error.

2. Minimize type II error among testing statistics

P (Type II error) P (Accept Hy | Hy)

1 — P (Reject Hy | Hy)

so that min P (Type II error) is equivalent to max P (Reject Hy | Hy) or
to maximize power of the test.

Relationship to confidence Interval for normal random sam-
ple
Known o2:

Given null hypothesis Hy : p = 1, we have

K= Ho

a/vn

so that with significance level 1 — «, we have

r( <c)=1-a

~ N (0,1)

K~ Ho

a/vn
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so that
| )

P(a/ﬁ >">:a

which is exactly the definition of type I error if the testing procedure is to reject
Hy if

B~ Ho a
7|

Therefore, the rejection region would be

sl > 2y

Rmk: Confidence level : 1— significance level

Knonwn o2:

Using & to replace unknown population counterpart:

~ t’n—l

0
G/v/n

so that the rejection region would be
H— Ho

{ o/v/n ”a}

where ¢, is the inverse of distribution function of ¢ distribution.

2.6 Lecture 19

Power function
Power function of testing procedure § is defined as
(6| §) = P (rejecting Hy | 6)

For simple hypotheses Hy : 8 = 0y and H; : § = 61, given level of significance
a’

s (9(] | 5) =«
and the power of test would be
w01 ]10)=1-p

Rmk: For two different testing procedures §; and d2, one comparison method is
to compare the power of 7 (01 | 01) and 7 (61 | 02) .
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Neyman-Pearson Lemma

Given a sample {z1,...,z,} and likelihood function L (), consider a simple
hypothesis Hy : 8 = 6y against simple alternative H; : § = 6. The following
test is the most powerful test:

L (0o)
L (61)

Reject Hy if

Rmk 1: Since rejection region Ajg is {égg‘;; < c}, the value of ¢ could be found

when « is given because

Rmk 2: If f is continuous, we have
a = P(Ao|Ho)= [ [(xb0)da;
Ao

l—ﬁ = P(A0|H1): 4 f($,01)d$

Rmk 3: The meaning of most powerful test means that if we have another
testing procedure with rejection region By, we would have (i) P (By | Hy) = «
and (11) P(B() | Hl) S P(Ao | Hl)
Significance level of composite null hypothesis
Suppose Hy : 0 € ©Og and Hy : 0 = 04, if for all § € Og, such that
Py (Type I error | Hy) = fz,0)de=7(0) <«
Ao

then, it has significance level of a.

Power of composite alternative hypothesis
Suppose Hy : 0§ = 0y and Hy : 0 € O, if for all 8 € O, such that
Py (Ao | 0) = fx,0)de=7(0)=1-p
Ao

then, it has power of 1 — f3.

Uniformly most powerful Test (UMP Test)

Suppose Hy : 6 € ©g and H; : 6 € ©, testing procedures §;, test 6* is UMP test
if for all level of « such that for the
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1. same level of significance «,

m(01]0;) <, for all § € Oy

2. §* is highest power among §;,

7(0]6%)>m(0]6;), for all § € ©4

Monotone Likelihood Ratio

Let f, (z|0) be joint p.d.f. of {z1,...,2,} and consider a statistic T =
T(x1,...,2,) if for two values 6; and 65 in O, say 6; < 6o, the likelihood

ratio
In (ac | 01)

depends on x only through 7' (z), and this ratio is an increasing fucntion of T' ()
over the range of all possible values of T (), then f, (x| #) has a monotone
likelihood ratio in statistics 7.

Testing with monotone likelihood ratio

For Hy : 6 < 0g and Hy : 0 > 0g:

Suppose fy, (z | 8) has a monotone likelihood ratio in T (z). Let ¢ and « be
constant such that P (T > ¢ | 6 = 0p) = «. Then the test “rejects Hy : 6 < 0 if
T > ¢” is a UMP test at the level of significance «.

For Hy: 60 > 6y and Hy : 0 < Hy:

Suppose f, (z | ) has a monotone likelihood ratio in T'(z). Let ¢ and a be
constant such that P (T < c¢| 6 = 0y) = a. Then the test “rejects Hy : 0 > 6 if
T <’ is a UMP test at the level of significance «.
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The Appendix

Now the Appendix is empty.
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Afterword

The back matter often includes one or more of an index, an afterword, acknowl-
edgements, a bibliography, a colophon, or any other similar item. In the back
matter, chapters do not produce a chapter number, but they are entered in the
table of contents. If you are not using anything in the back matter, you can
delete the back matter TeX field and everything that follows it.
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