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PREFACE



Introduction

Notes for Macro. It would include EC750 and EC751 which is core for compre-
hensive examination of Economics Ph.D in Boston College.
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EC720 Math






Chapter 1

Two Useful Theorems

1.1 The Kuhn-Tucker Theorem

e Maximization

— Problem Setup: (k constraints and n choice variable)

max F(z1,...,zp)
T1yeesTn
s.t. C; > Gl (xl,...,xn)
— Lagrangian:

E(.’Eh...,l‘";Al,...,/\k) ZF(Jfl,...,l‘n)—l—E?:l )\z [Ci _Gi (221,...

— Kuhn-Tucker conitions

oL k aGm _
do; ~ D mm Am = =0
oL

IN C; G’L (xla ,Cl]'n) - 0
Ai 20 Aifeg —Gi(21,...,20)] =0

* Necessary conditions only

foralli=1,...,k

fori=1,...,n
fori=1,...,n
fori=1,...,n

)

% Constraint qualification: Hessian |0G; (*) /Ox;| has maximum
rank or simply G’ (z*) # 0 in one constraint case:

e Minimization

— Problem Setup: (k constraints and n choice variable)

min F(z1,...,2p)
L1y Ty
s.t. Gl (xl,...,xn) ZCi

foralli=1,...,k



4 CHAPTER 1. TWO USEFUL THEOREMS

— Lagrangian:

L(21,. T Ay M) = F (21, 0) =0 N (G (21, -

7xn) - C'L]

— Kuhn-Tucker conitions (Proof. for single variable case is in appendix)

oL . 0G,, o
a'lzz—FZ—Zm:l)\maixL—o f0r2—17...
oL .
a:_C7‘i(gch,,,7xn)—|—cl-§0 fori=1,...
)\LZO, )\i[c,;fG,-(ml,...,xn)]:() fori:l,...

1.2 The Envelope Theorem
e Objective functions with parameters:

F(xl,...,xn;el,...,eh)

e Value functions

V(b1,...,0,) = max F(x1,...,2,;01,...,0p)

T15.e3Tn
or

V(01,...,0,) = min F(x1,...,2,;01,...,0p)

T1yee3Tn

e Envelope Theorem (with constraint)

— assumption on the existence of an unique solution z* (64, ...

optimization problem

,0n) to

— constraint qualification: dG; [z* (0),0] /dx # 0 for all value of 6 and

for all 3.

— envelope theorem implies

dv (0y,...,0,) 9L

40, 26, or ¢ N O
— remark: For maximization problem
av (01,...,0,
%:ci—Gi fori=1,...,n

and for minimization problem

dv (01,...,0,)

a, =—¢+G; fori=1,...,n



Chapter 2

Dynamic Optimization

2.1

Discrete Case

e Setup

T period of time but there is T+ 1 point of time, denoted as t =
0,1,...,T

Stock variable: y; (defined as value beginning of the period, from
t=0tot=T+1)

flow variable: z; (defined as value during period, fromt =0tot =T

Objective function: (additively separable with discount factor)

Zf,T:o p'F (Yt 265 1)

where 0 < 5 < 1.

Evolution of stock variables (only T + 1 flow variables so that only
T + 1 envolution)

Q(ytazt;t)zyfrl*l_yt foraut:ov]-v"‘vT

Constraints of each period (same as the number of envolution as
constraint is to restrict the process)

¢ > G (yt, 2t) forallt=0,1,...,T
Initial and terminal condition

Yo is given

yr41 > y*
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— Formal problem:

{Zt}fjno’?{;(t 3;1 Zf:o /BtF (yt, Zt; t)
s.t. e + Q (ye, 2e5t) > yppq1 forallt=0,1,...,T
c> G (y,z;t) forallt=0,1,...,T
Yo is given
yr+1 2y

e The Kuhn-Tucker Formulation
— The Lagrangrian is

L = Zfzo BF (yi, z;t) + ZZ:O o1 [We + Q (Yr, 263 1) — Yy1]
+ oAl — G (e zit)] + 6 lyrar — y7)

— FOCs are
oL ‘
% = 6Fyt+77t+1(1+Qyt)_7rt_AtGyt:O forallt:l,Q,...
t
oL ‘
87 = 6F2t+77t+1ta_)\tht:O forallt:O,l,...,T
t
oL
Oyr41
oL
= yt+Q(yt72t;t)_yt+120 fOI'a,Ht:O,l,..-,T
37Tt+1
% = ¢—G(y,z;t) >0 forallt=0,1,...,T
t
Ter1 = 0 e [ye + Q (ye, 265t) —yer1] =0 forallt =0,1,...,
M > 0 MNle—=G(yp,z;t)] =0 forallt=0,1,...,T
¢ > 0 ¢(yry1—y")=0

— Assuming constraint for envolution is binding, so that we have
ye +Q (ys, 245t) —ypr1 =0 forallt=0,1,...,T

and we also have
mr41 (Yr41 —y*) =0

— Four equations with four unknowns y;, z¢, 7 and A\s:

ﬂtFyt+7Tt+1(1+Qyt)—7Tt—)\tGytZO forallt=1,2,...,T
B'F,, 4+ m41Qs, — MG, =0 forallt=0,1,...,T
yr + Q (ys, 2e;t) —yp1 =0 forallt=0,1,...,T
Atle—G (y,2;t)] =0 forallt=0,1,...,T

*
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with initial and terminal conditions

Yo 1s given

mry1 (Yyr+1 —y*) =0
— Remark: when T' — o0, the transversality condition would then be
T1LH;O Tr1 (Yry1 —y*) =0
e Maximum Principle

— it refers to the fact that solving the Hamiltonian is same as solving
by Kuhn-Tuker method

— Hamiltonian

H(y, me41) = mzathF (Yts 263 t) + Te11Q (Y, 245 )
t
st. ¢ > Gy z;t)

— The FOC of maximization problem is

oOH
o BF,, + 1141Q., — MG, =0 forallt=0,1,...,T
2t

— By Envelope theorem, we have

O0H
Ti41 — T = —@ = —ﬁtFyt — 7Tt+1Qyt + )‘tGyt forall t = 1, 2, .
t
0H
Yi+1 — Yt 91 =Q (yt,2;t) forallt=0,1,...,T

2.2 Continuous Case

Setup
1. time ¢ € [0,T], where T can be finite or infinite
2. Stock variable: y (t)
3. flow variable: z (t)

4. Objective function: (additively separable with discount factor)

ftT:Oe_”tF (Y, ze,t) dt

where p > 0.
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5. Evolution of stock variables:
Qy(t),z(t),t) At >y (t + At) —y (1)

or when At — 0,

Qy(t),z(t),1) >y
6. Constraints at each point of time,

ch(y(t),Z(t),t)

7. Initial and terminal condition

y (0) is given

y(T) =y
8. Formal problem:
T
max | errw s o
{20} o v} o t=0
s.t. Qyt),z(t),t)>y(t) forallte|0,T]

c¢> Gy, z,t) foralltel0,T]
y (0) is given
y(T) =y

The Kuhn-Tucker Formulation

The Lagrangrian is
T

T
£o= [ erPumawndt [ rOREO.20.0 i)

=0 t=0

+/t=o)\(t)[C_G(y(t)wz(t)’t)}+¢[3/(T)—y*]dt

From Integration by parts,
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so that
T T
L= [ errumewodr [ c0RE0.:0.0)
t=0 t=0
T
+ [ w O a+m0)y0) ~= @)y ()
T
+ [ AOL=G ). 0).ld+ o1y (D)~
FOCs are
oL —pt B
92 () = e"F,+7({t)Q,—A({t)G,=0 foralltel0T]
oL et T (t) — = or a
@ = BT +EW) A6, =0 forallte(O,T)
oL —rT T 7'r -7 - = orallt =
sy = ¢ FATDQ AR —n (1) =N Gy +9=0 forallt=T
8781'?15) = Q®),z(t),t)—g(@t)>0 forallte (0,T)
oL
Y0 = ¢c—G(y(t),z(t),t) >0 forallt=10,T]
() = 0 7()[Q(y(®),z(t),t)—y(t)] =0 forallt=(0,T)
AR) > 0 At)[ce—G(y®),z(t),t))=0 forallt=][0,T]
¢ =2 0 ¢ —-y’)=0

Further assume all functions of ¢ are continuously differentiable, then
e "Fy+m(t)Qy+7(t)—A(t)Gy, =0 foralltel[0,T]

7 (t) == [eP'Fy+7(t) Qy — A(t) Gy

so that
7 (T) = ¢.

Assuming constraint for envolution is binding, so that we have
yt)=Q(y(t),z(t),t) forallt=1[0,T)

Four equations with four unknowns y (¢), z (¢), 7 (¢t) and A (¢):

e P E,+7(t)Q.—A(#)G, =0 foralltel0,T)
7'1'(t) — e P'F, +7T(t)Qy A(t)Gy]  for allt—[O,T]
y(t)=Q(y(t),z(t),t) forallt=10,T)

A [e—Gy(t),z(t),t)]=0 forallt=][0,T]
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with initial and terminal conditions
y (0) is given
m(T)[y(T) =y ]=0
Remark: when 7' — oo, the transversality condition would then be

lim 7(T)[y(T) -y =0

T—o00

Maximum Principle

It refers to the fact that solving the Hamiltonian is same as solving by Kuhn-
Tuker method
The Hamiltonian is

Hy(t),(#) = g1(§§<6’ptF(y(t)7Z(t),t)+ﬂ(t)Q(y(t)7Z(t),t)

st. ¢ > Gy),z(t);1)
The FOC of maximization problem is

OH
0z (t)

—e PF4+7(t)Q. —A(t)G. =0 forallt=1[0,T]

By Envelope theorem, we have

dH —pt T _
FMO) = e PF,+7m(t)Qy— Gy
£~ Q0.

and now compared this with result from Kuhn-Tucker, we have

dH

T (t) = —mz—[ef”tFy—&—W(t)Qy—/\(t)Gy} for all ¢t = [0, T
() = %:Q(ya),z(tm) for all £ = [0, 7]

2.3 Final Note

1. Present-Value Hamiltonian versus Current Value Hamiltonian

2. Phase Diagram



C

hapter 3

Dynamic Optimization

3.1 Perfect Foresight in discrete Case

Setup
1. no uncertainty
2. T period of time but there is T' 4 1 point of time, denoted as t = 0,1, ...
3. Stock variable: y; (defined as value beginning of the period, from ¢ = 0)
4. flow variable: z; (defined as value during period, from ¢t = 0)
5. Objective function: (additively separable with discount factor)
Z?:o BtF (Y, 213 1)

where 0 < 5 < 1.
6. Evolution of stock variables (only T+ 1 flow variables so that only T + 1

envolution)

Q (Ye, ze5t) > Yey1 — Yt forallt=0,1,...,T

7. Constraints of each period (same as the number of envolution as constraint

is to restrict the process)

c> G (yt, 2t) forallt=0,1,...,T

8. Initial condition

Yo is given

11
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9. Formal problem:

{zt}fflw?;i 741 Zfzo B'F (ys, z4;t)
s.t. yr + Q (Y, 2e5t) > ypqq forallt=0,1,...,T
c> G (yt,z;t) forallt=0,1,...,T
Yo is given

Kuhn-Tucker Formulation

Bellman Equation
3.2 Dynamic Stochastic in discrete Case

Setup

Bellman Equation
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Appendix I EC740

A.1 Proof of Kuhn Tucker Condition for min-
imization problem with single choice vari-
able and single constraint:

Suppose z* minimize F (z) subject to G (z) > c¢. Given G’ (z*) # 0 and the
lagrangian to be

L=F(z)- MG (z)—(,

then there exists A and z* such that

Lo=F (z%) = G (%) =0 (A.1)
Ly=-G(z)+c<0 (A.2)
A>0 (A.3)

AG (") —d =0 (A.4)

Case 1: Non-Binding constraint

Non-binding constraint means G (z*) > ¢ so that (2) is true. From (4), we know
that A = 0. Then (3) is also true. Finally, we have to show (1), which is F’ (z*) =
0. Suppose F' (z*) < 0, there exists € > 0 such that F'(z* +¢) < F (z*) but
G (z* + €) > ¢, which violates the fact that z* is minimizer. Similarly, suppose
F' (x*) > 0, there exists € > 0 such that F (z* —¢) < F (z*) but G (z* —¢) < ¢,
which viotlates the optimality of z*.

Case 2: Binding constraint

Binding constraint means G (z*) = ¢ so that (2) and (4) are true. Then from
(1), given G’ (z) # 0, we have A = F' (z*) /G’ (z*) so that by (3), we have

F (33*)

A= G (z%)

> 0.

13



14 APPENDIX A. APPENDIX I EC740

Suppose the contrary that A < 0, so we have two cases: either

{F’(m*)>0 {F’(w*)<0
G'(x)<0 " G (a*) >0

In the first case, there would exist e such that F' (z* —¢) < F (z*) and G (z* —¢) >
G (z*) = ¢, which means z*—¢ is better minimizer. Contradiction. In the second
case, there would also exist € such that F'(z* +¢) < F (z*) and G (z* +¢) >
G (z*) = ¢, which implies means z* + ¢ is better minimizer. Contradiction.

Hence (1) is also true.

A.2 Summary of EC750

Kuhn-Tuker and Envelop Theorem

Static Maximization Problem
max F' (z) s.t. ¢c>G(x)
Kuhn-Tucker Theorem: Assumption G’ (z*) # 0

Lagrangian L=F(z)+ Ac— G (x)]
First order condition L,=0=F,—)\G,=0
constraint Ly>0=c—G(z)>0
Non-negativity condition A>0
Complementary slackness Ae—G(z)] =0

Envelope Theorem: Assumption Gy [z* (6),60] # 0
Maximum value function V (0) = max, F (z,0) s.t. c>G(z,0)

optimal value x* (0) = argmax, F (x,0) s.t. ¢ > G(x,0)
associated multiplier A (6)
Envelope Theorem V'(0) = Fa|z* (0),0] — X" (0) Go |z* () , 0]
Static Minimization Problem
mgnF(x) st. G(z) > ¢
Kuhn-Tucker Theorem: Assumption G’ (z*) # 0
Lagrangian L=F(x)— A[G(z)—(]
First order condition L,=0=F,—)\G,=0
constraint Ly<0=-G(z)—c<0
Non-negativity condition A>0
Complementary slackness Ale—G(x)]=0
Envelope Theorem: Assumption Gy [z* (6),60] # 0
Mnimum value function V(0) =min F (z,0) s.t. G(z,0) >c¢
optimal value xz* (0) = argmin, F (x,0) s.t. G(x,0) >¢
associated multiplier A (6)
Envelope Theorem V() = Fa|z* (0),0] + X" (0) Go |[z* () , 0]
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Maximium Principle

15

Discrete Dynamic Maximization problem

max

s.t.

y (0) is given
Yre1 > y°

=} o {u®},

Yr + Q (Yt 26, t) > Y1
c > G (ye, 2, )

Zio BF (y(t),z(t),t)dt

forall t=0,1,...,7T

forallt=0,1,...,7T

Maximum Principle (Current Value)

Current Value Hamiltonian

H (ys, mi41)
= IgaxﬂtF(yt,Znt) + me11Q (Ye, 2t, 1)
t

s.t. ¢ > G (yg, 21, 1)

0H
FOC for z; — =0 forallt=0,1,...,T
8Zt
0OH
Envelope Thm. for m; Mgl — Mg = 50 forallt=1,...,T
Yt
JH
Envelope Thm. for k; ki1 — k= — forallt=0,1,...,T
on t41
Initial condition Yo 1S given
Transversality condition Tr41 [Yyre1 — Yy =0
Maximum Principle (Present Value)
H (yt, me41)
t
Present Value Hamiltonian = mjxﬁ [F' (yt, 26, t) + Te41Q (Y, 2¢, )]
s.t. ¢ > G (yt, 2, 1)
H
FOC for z 8—:O forallt=0,1,...,T
('9,215
t t—1 oH
Envelope Thm. for 7 B'myp1 — 0 mp=——— forallt=1,...,T
Y
aH
Envelope Thm. for k; kiy1 — ki = ———— forallt=0,1,...,T
op'm t41
Initial condition Yo 1s given

Transversality condition

BT rri yre1 —y*] =0
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Continuous Dynamic Maximization problem

max

s.t.

y(T) >y

{=®} o {y(t

Qy(t),z(t),t) =y (t)
c> G (yr, 2, 1)
y (0) is given

T
e PLF (y(t),z(t),t)dt
. | emru.zm.0

for all ¢t € [0, T
for all t € [0,T]

Maximum Principle (Current Value)

Current Value Hamiltonian

H(y (), ()
=maxe "' F (y(t), 2(6),0) + 7 () Qy (1), 2(1),1)

st.c>G(y(t),z(¢),t)

FOC for z (t) az‘z) =0 forallte[0,T]
H
Envelope Thm. for 7 (¢) 7 (t) = O?J(t) for all t € [0, T
Envelope Thm. for k (t) k(t) = I0) for all ¢t € [0, T
T
Initial condition Yo is given

Transversality condition

(1) [y(T) -y ]=0

Maximum Principle (Present Value)

Present Value Hamiltonian

H(y(t),7 (1)
=maxe " {F (y(t),2 (1), 1) +7 () Qy(*),2 (1), 1)}
st.e>G(y(t),z(),t)

0H
F fi t A
OC for z (t) FE0)
de=Plr (t O0H
Envelope Thm. for 7 (¢) ‘ dt7T( ) = "oy 0
0H
Envelope Thm. for k (¢) k(t) = SEa0)
e~ Pt
Initial condition Yo is given

Transversality condition

e (D) y(T) -y ]=0
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Dynamic Optimization

Discrete Dynamic Maximization problem with Perfect Foresight

T
max F(y(t),z(t),t)dt
(=)0 {u ()}, Zt:oﬁ w(®),2(),0)
s.t.

yt+Q(yt72t7t)2yt+1 for allt:07la
c> G (y,2,t) forallt=0,1,...
y (0) is given

Dynamic Programming

Bellman Equation

U(ytvt)
= m;:me (ye, 26, ) + Bv (Yeq1,t + 1)
s.t. ¢ > G (yt, 21, t)
= rnZaXF(ytvztat) + B (ye + Q (ys, 2, 1) , t + 1) + A [c — G (Y, 24, t)]

FOC for z;

F,+B8VQ,— NG, =0 forallt=0,1,...

Envelope Thm. for y,

V=F,+p0(1+Q,)— MG, forallt=1,...

Binding constraint

yr + Q (yr, 2¢,t) = yepq1 forallt =0,1,...

Comp. Slackness

At[c— G (yi, 2z,t)] =0 forallt=0,1,...

Stochasitc Discrete Dynamic Maximization problem

max
20} 20, {y() 3524
s.t.

Et+1 = PEL + Mg forallt=0,1,...

yr + Q (Y, 2, €41,t) > yp41 forallt=0,1,...
y (0) is given

BoY "~ BF(y(),=(t) 1t

Dynamic Programming

Bellman Equation

v (Y, ¢, t)
= max I’ (Yts 26, t) + BEL [V (Y41, €415t + 1)]

= mzaxF (Yt 26, ) + BE [v (ye + Q (yt, 2, €141, 1) , €441, 1 + 1)

FOC for z;

F,+BE[vQ,]=0 forallt=0,1,...,T

Envelope Thm. for y;

V=F,+p0(14+Q,) forallt=1,...,T

Binding constraint

Y +Q (Y, 2, 41,t) =ypp1 forallt =0,1,..., T




18

APPENDIX A. APPENDIX I EC740



Appendix B

Appendix II EC751

19



20

APPENDIX B. APPENDIX II EC751



Afterword

21



22

AFTERWORD



Acknowledgements

23



24

ACKNOWLEDGEMENTS



Bibliography

25



	Introduction
	I EC720 Math
	Two Useful Theorems
	The Kuhn-Tucker Theorem
	The Envelope Theorem

	Dynamic Optimization 
	 Discrete Case
	Continuous Case
	Setup
	The Kuhn-Tucker Formulation
	Maximum Principle

	Final Note

	Dynamic Optimization
	Perfect Foresight in discrete Case
	Setup
	Kuhn-Tucker Formulation
	Bellman Equation

	Dynamic Stochastic in discrete Case
	Setup
	Bellman Equation


	Appendix I EC740
	Proof of Kuhn Tucker Condition for minimization problem with single choice variable and single constraint:
	Summary of EC750
	Kuhn-Tuker and Envelop Theorem
	Maximium Principle
	Dynamic Optimization


	Appendix II EC751
	Afterword
	Acknowledgements
	Bibliography


