Review Notes for EC750

Little Tiger

1st Dec 07

Contents

In	troduction	vii
Ι	EC720 Math	1
1	Two Useful Theorems	3
	1.1 The Kuhn-Tucker Theorem	3
	1.2 The Envelope Theorem	4
2	Dynamic Optimization	5
	2.1 Discrete Case	5
	2.2 Continuous Case	7
	Setup	7
	The Kuhn-Tucker Formulation	8
	Maximum Principle	10
	2.3 Final Note	10
3	Dynamic Optimization	11
	3.1 Perfect Foresight in discrete Case	11
	Setup	
	Kuhn-Tucker Formulation	
	Bellman Equation	
	3.2 Dynamic Stochastic in discrete Case	
	Setup	
	Bellman Equation	
٨	Appendix I EC740	13
A	A.1 Proof of Kuhn Tucker Condition for minimization proble	
	single choice variable and single constraint:	
	A.2 Summary of EC750	
	· ·	
	Kuhn-Tuker and Envelop Theorem	
	Maximium Principle	
	Бунание Оринизации	11
\mathbf{B}	Appendix II EC751	19

iv	CONTENTS
Afterword	21
Acknowledgements	23
Bibliography	25

Preface

This is note for Macro.

vi PREFACE

Introduction

Notes for Macro. It would include EC750 and EC751 which is core for comprehensive examination of Economics Ph.D in Boston College.

Part I EC720 Math

Chapter 1

Two Useful Theorems

1.1 The Kuhn-Tucker Theorem

- Maximization
 - Problem Setup: (k constraints and n choice variable)

$$\max_{x_1,\dots,x_n} F(x_1,\dots,x_n)$$
s.t.
$$c_i \ge G_i(x_1,\dots,x_n) \quad \text{for all } i = 1,\dots,k$$

- Lagrangian:

$$\mathcal{L}(x_1,\ldots,x_n;\lambda_1,\ldots,\lambda_k) = F(x_1,\ldots,x_n) + \sum_{i=1}^k \lambda_i \left[c_i - G_i(x_1,\ldots,x_n)\right]$$

- Kuhn-Tucker conitions

$$\frac{\partial \mathcal{L}}{\partial x_{i}} = F_{i} + \sum_{m=1}^{k} \lambda_{m} \frac{\partial G_{m}}{\partial x_{i}} = 0 \qquad \text{for } i = 1, \dots, n$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = c_{i} - G_{i} (x_{1}, \dots, x_{n}) \geq 0 \qquad \text{for } i = 1, \dots, n$$

$$\lambda_{i} \geq 0; \quad \lambda_{i} [c_{i} - G_{i} (x_{1}, \dots, x_{n})] = 0 \qquad \text{for } i = 1, \dots, n$$

- * Necessary conditions only
- * Constraint qualification: Hessian $|\partial G_i(x^*)/\partial x_j|$ has maximum rank or simply $G'(x^*) \neq 0$ in one constraint case:
- Minimization
 - Problem Setup: (k constraints and n choice variable)

$$\min_{x_1,\dots,x_n} F(x_1,\dots,x_n)$$
s.t.
$$G_i(x_1,\dots,x_n) \ge c_i \quad \text{for all } i = 1,\dots,k$$

- Lagrangian:

$$\mathcal{L}(x_1,\ldots,x_n;\lambda_1,\ldots,\lambda_k) = F(x_1,\ldots,x_n) - \sum_{i=1}^k \lambda_i \left[G_i(x_1,\ldots,x_n) - c_i\right]$$

- Kuhn-Tucker conitions (Proof. for single variable case is in appendix)

$$\frac{\partial \mathcal{L}}{\partial x_i} = F_i - \sum_{m=1}^k \lambda_m \frac{\partial G_m}{\partial x_i} = 0 \qquad \text{for } i = 1, \dots, n$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = -G_i(x_1, \dots, x_n) + c_i \le 0 \qquad \text{for } i = 1, \dots, n$$

$$\lambda_i \ge 0; \quad \lambda_i \left[c_i - G_i(x_1, \dots, x_n) \right] = 0 \qquad \text{for } i = 1, \dots, n$$

1.2 The Envelope Theorem

• Objective functions with parameters:

$$F(x_1,\ldots,x_n;\theta_1,\ldots,\theta_h)$$

• Value functions

$$V\left(\theta_{1},\ldots,\theta_{n}\right) = \max_{x_{1},\ldots,x_{n}} F\left(x_{1},\ldots,x_{n};\theta_{1},\ldots,\theta_{h}\right)$$

or

$$V\left(\theta_{1},\ldots,\theta_{n}\right) = \min_{x_{1},\ldots,x_{n}} F\left(x_{1},\ldots,x_{n};\theta_{1},\ldots,\theta_{h}\right)$$

- Envelope Theorem (with constraint)
 - assumption on the existence of an unique solution $x^*(\theta_1, \dots, \theta_n)$ to optimization problem
 - constraint qualification: $dG_i[x^*(\theta), \theta]/dx \neq 0$ for all value of θ and for all i.
 - envelope theorem implies

$$\frac{dV\left(\theta_{1},\ldots,\theta_{n}\right)}{d\theta_{i}} = \frac{\partial \mathcal{L}}{\partial \theta_{i}} \quad \text{for } i = 1,\ldots,n$$

- remark: For maximization problem

$$\frac{dV\left(\theta_{1},\ldots,\theta_{n}\right)}{d\lambda_{i}} = c_{i} - G_{i} \quad \text{for } i = 1,\ldots,n$$

and for minimization problem

$$\frac{dV(\theta_1, \dots, \theta_n)}{d\lambda_i} = -c_i + G_i \quad \text{for } i = 1, \dots, n$$

Chapter 2

Dynamic Optimization

2.1 Discrete Case

- Setup
 - T period of time but there is T+1 point of time, denoted as $t=0,1,\ldots,T$
 - Stock variable: y_t (defined as value beginning of the period, from t=0 to t=T+1)
 - flow variable: z_t (defined as value during period, from t = 0 to t = T
 - Objective function: (additively separable with discount factor)

$$\sum_{t=0}^{T} \beta^{t} F\left(y_{t}, z_{t}; t\right)$$

where $0 < \beta \le 1$.

- Evolution of stock variables (only T+1 flow variables so that only T+1 envolution)

$$Q(y_t, z_t; t) \ge y_{t+1} - y_t$$
 for all $t = 0, 1, ..., T$

 Constraints of each period (same as the number of envolution as constraint is to restrict the process)

$$c \geq G(y_t, z_t)$$
 for all $t = 0, 1, \dots, T$

- Initial and terminal condition

$$y_0$$
 is given

$$y_{T+1} \ge y^*$$

- Formal problem:

$$\max_{\{z_{t}\}_{t=0}^{T}, \{y_{t}\}_{t=1}^{T+1}} \qquad \sum_{t=0}^{T} \beta^{t} F\left(y_{t}, z_{t}; t\right)$$

$$s.t. \qquad y_{t} + Q\left(y_{t}, z_{t}; t\right) \geq y_{t+1} \quad \text{for all } t = 0, 1, \dots, T$$

$$c \geq G\left(y_{t}, z_{t}; t\right) \quad \text{for all } t = 0, 1, \dots, T$$

$$y_{0} \text{ is given}$$

$$y_{T+1} \geq y^{*}$$

- The Kuhn-Tucker Formulation
 - The Lagrangrian is

$$\mathcal{L} = \sum_{t=0}^{T} \beta^{t} F(y_{t}, z_{t}; t) + \sum_{t=0}^{T} \pi_{t+1} [y_{t} + Q(y_{t}, z_{t}; t) - y_{t+1}] + \sum_{t=0}^{T} \lambda_{t} [c - G(y_{t}, z_{t}; t)] + \phi [y_{T+1} - y^{*}]$$

- FOCs are

$$\begin{split} \frac{\partial \mathcal{L}}{\partial y_t} &= \beta^t F_{y_t} + \pi_{t+1} \left(1 + Q_{y_t} \right) - \pi_t - \lambda_t G_{y_t} = 0 \quad \text{for all } t = 1, 2, \dots, T \\ \frac{\partial \mathcal{L}}{\partial z_t} &= \beta^t F_{z_t} + \pi_{t+1} Q_{z_t} - \lambda_t G_{z_t} = 0 \quad \text{for all } t = 0, 1, \dots, T \\ \frac{\partial \mathcal{L}}{\partial y_{T+1}} &= \pi_{T+1} - \phi = 0 \\ \frac{\partial \mathcal{L}}{\partial \pi_{t+1}} &= y_t + Q \left(y_t, z_t; t \right) - y_{t+1} \geq 0 \quad \text{for all } t = 0, 1, \dots, T \\ \frac{\partial \mathcal{L}}{\partial \lambda_t} &= c - G \left(y_t, z_t; t \right) \geq 0 \quad \text{for all } t = 0, 1, \dots, T \\ \pi_{t+1} &\geq 0 \quad \pi_{t+1} \left[y_t + Q \left(y_t, z_t; t \right) - y_{t+1} \right] = 0 \quad \text{for all } t = 0, 1, \dots, T \\ \lambda_t &\geq 0 \quad \lambda_t \left[c - G \left(y_t, z_t; t \right) \right] = 0 \quad \text{for all } t = 0, 1, \dots, T \\ \phi &\geq 0 \quad \phi \left(y_{T+1} - y^* \right) = 0 \end{split}$$

- Assuming constraint for envolution is binding, so that we have

$$y_t + Q(y_t, z_t; t) - y_{t+1} = 0$$
 for all $t = 0, 1, ..., T$

and we also have

$$\pi_{T+1} (y_{T+1} - y^*) = 0$$

- Four equations with four unknowns y_t, z_t, π_t and λ_t :

$$\begin{cases} \beta^{t} F_{y_{t}} + \pi_{t+1} (1 + Q_{y_{t}}) - \pi_{t} - \lambda_{t} G_{y_{t}} = 0 & \text{for all } t = 1, 2, \dots, T \\ \beta^{t} F_{z_{t}} + \pi_{t+1} Q_{z_{t}} - \lambda_{t} G_{z_{t}} = 0 & \text{for all } t = 0, 1, \dots, T \\ y_{t} + Q (y_{t}, z_{t}; t) - y_{t+1} = 0 & \text{for all } t = 0, 1, \dots, T \\ \lambda_{t} [c - G (y_{t}, z_{t}; t)] = 0 & \text{for all } t = 0, 1, \dots, T \end{cases}$$

with initial and terminal conditions

$$y_0$$
 is given $\pi_{T+1} (y_{T+1} - y^*) = 0$

- Remark: when $T \to \infty$, the transversality condition would then be

$$\lim_{T \to \infty} \pi_{T+1} \left(y_{T+1} - y^* \right) = 0$$

- Maximum Principle
 - it refers to the fact that solving the Hamiltonian is same as solving by Kuhn-Tuker method
 - Hamiltonian

$$H\left(y_{t}, \pi_{t+1}\right) = \max_{z_{t}} \beta^{t} F\left(y_{t}, z_{t}; t\right) + \pi_{t+1} Q\left(y_{t}, z_{t}; t\right)$$

$$s.t. \quad c \geq G\left(y_{t}, z_{t}; t\right)$$

- The FOC of maximization problem is

$$\frac{\partial H}{\partial z_t} = \beta^t F_{z_t} + \pi_{t+1} Q_{z_t} - \lambda_t G_{z_t} = 0 \quad \text{for all } t = 0, 1, \dots, T$$

- By Envelope theorem, we have

$$\pi_{t+1} - \pi_t = -\frac{\partial H}{\partial y_t} = -\beta^t F_{y_t} - \pi_{t+1} Q_{y_t} + \lambda_t G_{y_t} \quad \text{for all } t = 1, 2, \dots, T$$

$$y_{t+1} - y_t = \frac{\partial H}{\partial \pi_{t+1}} = Q(y_t, z_t; t) \quad \text{for all } t = 0, 1, \dots, T$$

2.2 Continuous Case

Setup

- 1. time $t \in [0, T]$, where T can be finite or infinite
- 2. Stock variable: y(t)
- 3. flow variable: z(t)
- 4. Objective function: (additively separable with discount factor)

$$\int_{t=0}^{T} e^{-\rho t} F\left(y_t, z_t, t\right) dt$$

where $\rho \geq 0$.

5. Evolution of stock variables:

$$Q(y(t), z(t), t) \Delta t \ge y(t + \Delta t) - y(t)$$

or when $\Delta t \to 0$,

$$Q(y(t), z(t), t) \geq \dot{y}$$

6. Constraints at each point of time,

$$c \geq G\left(y\left(t\right),z\left(t\right),t\right)$$

7. Initial and terminal condition

$$y(0)$$
 is given $y(T) \ge y^*$

8. Formal problem:

$$\max_{\{z(t)\}_{t=0}^{T}, \{y(t)\}_{t=0}^{T}} \int_{t=0}^{T} e^{-\rho t} F(y(t), z(t), t) dt$$

$$s.t. \qquad Q(y(t), z(t), t) \ge y(t) \quad \text{for all } t \in [0, T]$$

$$c \ge G(y_t, z_t, t) \quad \text{for all } t \in [0, T]$$

$$y(0) \text{ is given}$$

$$y(T) \ge y^*$$

The Kuhn-Tucker Formulation

The Lagrangian is

$$\mathcal{L} = \int_{t=0}^{T} e^{-\rho t} F(y(t), z(t), t) dt + \int_{t=0}^{T} \pi(t) [Q(y(t), z(t), t) - \dot{y}(t)] dt + \int_{t=0}^{T} \lambda(t) [c - G(y(t), z(t), t)] + \phi[y(T) - y^{*}] dt$$

From Integration by parts,

$$\int_{0}^{T} \left\{ \frac{d}{dt} \left[\pi \left(t \right) y \left(t \right) \right] \right\} dt = \int_{0}^{T} \dot{\pi} \left(t \right) y \left(t \right) dt + \int_{0}^{T} \pi \left(t \right) \dot{y} \left(t \right) dt$$

$$\Rightarrow \quad \pi \left(T \right) y \left(T \right) - \pi \left(0 \right) y \left(0 \right) = \int_{0}^{T} \dot{\pi} \left(t \right) y \left(t \right) dt + \int_{0}^{T} \pi \left(t \right) \dot{y} \left(t \right) dt$$

$$\Rightarrow \quad - \int_{0}^{T} \dot{\pi} \left(t \right) y \left(t \right) dt = \int_{0}^{T} \pi \left(t \right) \dot{y} \left(t \right) dt + \pi \left(0 \right) y \left(0 \right) - \pi \left(T \right) y \left(T \right)$$

so that

$$\mathcal{L} = \int_{t=0}^{T} e^{-\rho t} F(y(t), z(t), t) dt + \int_{t=0}^{T} \pi(t) [Q(y(t), z(t), t)] dt + \int_{0}^{T} \pi(t) \dot{y}(t) dt + \pi(0) y(0) - \pi(T) y(T) + \int_{t=0}^{T} \lambda(t) [c - G(y(t), z(t), t)] dt + \phi[y(T) - y^{*}]$$

FOCs are

$$\begin{split} \frac{\partial \mathcal{L}}{\partial z\left(t\right)} &= e^{-\rho t} F_z + \pi\left(t\right) Q_z - \lambda\left(t\right) G_z = 0 \quad \text{for all } t \in [0,T] \\ \frac{\partial \mathcal{L}}{\partial y\left(t\right)} &= e^{-\rho t} F_y + \pi\left(t\right) Q_y + \dot{\pi}\left(t\right) - \lambda\left(t\right) G_y = 0 \quad \text{for all } t \in (0,T) \\ \frac{\partial \mathcal{L}}{\partial y\left(t\right)} &= e^{-\rho T} F_y + \pi\left(T\right) Q_y + \dot{\pi}\left(T\right) - \pi\left(T\right) - \lambda\left(t\right) G_y + \phi = 0 \quad \text{for all } t = T \\ \frac{\partial \mathcal{L}}{\partial \pi\left(t\right)} &= Q\left(y\left(t\right), z\left(t\right), t\right) - \dot{y}\left(t\right) \geq 0 \quad \text{for all } t \in (0,T) \\ \frac{\partial \mathcal{L}}{\partial \lambda\left(t\right)} &= c - G\left(y\left(t\right), z\left(t\right), t\right) \geq 0 \quad \text{for all } t = [0,T] \\ \pi\left(t\right) &\geq 0 \quad \pi\left(t\right) \left[Q\left(y\left(t\right), z\left(t\right), t\right) - \dot{y}\left(t\right)\right] = 0 \quad \text{for all } t = (0,T) \\ \lambda\left(t\right) &\geq 0 \quad \lambda\left(t\right) \left[c - G\left(y\left(t\right), z\left(t\right), t\right)\right] = 0 \quad \text{for all } t = [0,T] \\ \phi &\geq 0 \quad \phi\left(y\left(T\right) - y^*\right) = 0 \end{split}$$

Further assume all functions of t are continuously differentiable, then

$$e^{-\rho t}F_y + \pi(t)Q_y + \dot{\pi}(t) - \lambda(t)G_y = 0$$
 for all $t \in [0, T]$

or

$$\dot{\pi}(t) = -\left[e^{-\rho t}F_y + \pi(t)Q_y - \lambda(t)G_y\right]$$

so that

$$\pi(T) = \phi$$
.

Assuming constraint for envolution is binding, so that we have

$$\dot{y}(t) = Q(y(t), z(t), t)$$
 for all $t = [0, T]$

Four equations with four unknowns y(t), z(t), $\pi(t)$ and $\lambda(t)$:

$$\begin{cases} e^{-\rho t} F_z + \pi\left(t\right) Q_z - \lambda\left(t\right) G_z = 0 & \text{for all } t \in [0, T] \\ \dot{\pi}\left(t\right) = -\left[e^{-\rho t} F_y + \pi\left(t\right) Q_y - \lambda\left(t\right) G_y\right] & \text{for all } t = [0, T] \\ \dot{y}\left(t\right) = Q\left(y\left(t\right), z\left(t\right), t\right) & \text{for all } t = [0, T] \\ \lambda\left(t\right) \left[c - G\left(y\left(t\right), z\left(t\right), t\right)\right] = 0 & \text{for all } t = [0, T] \end{cases}$$

with initial and terminal conditions

$$y(0)$$
 is given

$$\pi(T)[y(T) - y^*] = 0$$

Remark: when $T \to \infty$, the transversality condition would then be

$$\lim_{T \to \infty} \pi \left(T \right) \left[y \left(T \right) - y^* \right] = 0$$

Maximum Principle

It refers to the fact that solving the Hamiltonian is same as solving by Kuhn-Tuker method

The Hamiltonian is

$$H\left(y\left(t\right),\pi\left(t\right)\right) = \max_{z\left(t\right)} e^{-\rho t} F\left(y\left(t\right),z\left(t\right),t\right) + \pi\left(t\right) Q\left(y\left(t\right),z\left(t\right),t\right)$$

$$s.t. \quad c \geq G\left(y\left(t\right),z\left(t\right);t\right)$$

The FOC of maximization problem is

$$\frac{\partial H}{\partial z(t)} = e^{-\rho t} F_z + \pi(t) Q_z - \lambda(t) G_z = 0 \text{ for all } t = [0, T]$$

By Envelope theorem, we have

$$\frac{dH}{dy(t)} = e^{-\rho t} F_y + \pi(t) Q_y - \lambda G_y$$

$$\frac{dH}{d\pi(t)} = Q(y(t), z(t), t)$$

and now compared this with result from Kuhn-Tucker, we have

$$\dot{\pi}(t) = -\frac{dH}{dy(t)} = -\left[e^{-\rho t}F_y + \pi(t)Q_y - \lambda(t)G_y\right] \quad \text{for all } t = [0, T]$$

$$\dot{y}(t) = \frac{dH}{d\pi(t)} = Q(y(t), z(t), t) \quad \text{for all } t = [0, T]$$

2.3 Final Note

- 1. Present-Value Hamiltonian versus Current Value Hamiltonian
- 2. Phase Diagram

Chapter 3

Dynamic Optimization

3.1 Perfect Foresight in discrete Case

Setup

- 1. no uncertainty
- 2. T period of time but there is T+1 point of time, denoted as $t=0,1,\ldots$
- 3. Stock variable: y_t (defined as value beginning of the period, from t = 0)
- 4. flow variable: z_t (defined as value during period, from t=0)
- 5. Objective function: (additively separable with discount factor)

$$\sum_{t=0}^{T} \beta^{t} F\left(y_{t}, z_{t}; t\right)$$

where $0 < \beta \le 1$.

6. Evolution of stock variables (only T+1 flow variables so that only T+1 envolution)

$$Q(y_t, z_t; t) \ge y_{t+1} - y_t$$
 for all $t = 0, 1, ..., T$

7. Constraints of each period (same as the number of envolution as constraint is to restrict the process)

$$c \geq G(y_t, z_t)$$
 for all $t = 0, 1, \dots, T$

8. Initial condition

 y_0 is given

9. Formal problem:

$$\max_{\{z_{t}\}_{t=0}^{T}, \{y_{t}\}_{t=1}^{T+1}} \qquad \sum_{t=0}^{T} \beta^{t} F\left(y_{t}, z_{t}; t\right)$$

$$s.t. \qquad y_{t} + Q\left(y_{t}, z_{t}; t\right) \geq y_{t+1} \quad \text{for all } t = 0, 1, \dots, T$$

$$c \geq G\left(y_{t}, z_{t}; t\right) \quad \text{for all } t = 0, 1, \dots, T$$

$$y_{0} \text{ is given}$$

Kuhn-Tucker Formulation

Bellman Equation

3.2 Dynamic Stochastic in discrete Case

Setup

Bellman Equation

Appendix A

Appendix I EC740

A.1 Proof of Kuhn Tucker Condition for minimization problem with single choice variable and single constraint:

Suppose x^* minimize F(x) subject to $G(x) \ge c$. Given $G'(x^*) \ne 0$ and the lagrangian to be

$$\mathcal{L} = F(x) - \lambda [G(x) - c],$$

then there exists λ and x^* such that

$$\mathcal{L}_x = F'(x^*) - \lambda G'(x^*) = 0 \tag{A.1}$$

$$\mathcal{L}_{\lambda} = -G(x^*) + c \le 0 \tag{A.2}$$

$$\lambda > 0 \tag{A.3}$$

$$\lambda \left[G\left(x^{*}\right) -c\right] =0\tag{A.4}$$

Case 1: Non-Binding constraint

Non-binding constraint means $G(x^*) > c$ so that (2) is true. From (4), we know that $\lambda = 0$. Then (3) is also true. Finally, we have to show (1), which is $F'(x^*) = 0$. Suppose $F'(x^*) < 0$, there exists $\varepsilon > 0$ such that $F(x^* + \varepsilon) < F(x^*)$ but $G(x^* + \varepsilon) > c$, which violates the fact that x^* is minimizer. Similarly, suppose $F'(x^*) > 0$, there exists $\varepsilon > 0$ such that $F(x^* - \varepsilon) < F(x^*)$ but $G(x^* - \varepsilon) < c$, which violates the optimality of x^* .

Case 2: Binding constraint

Binding constraint means $G(x^*) = c$ so that (2) and (4) are true. Then from (1), given $G'(x) \neq 0$, we have $\lambda = F'(x^*)/G'(x^*)$ so that by (3), we have

$$\lambda = \frac{F'(x^*)}{G'(x^*)} \ge 0.$$

Suppose the contrary that $\lambda < 0$, so we have two cases: either

$$\left\{ \begin{array}{l} F'\left(x^{*}\right) > 0 \\ G'\left(x^{*}\right) < 0 \end{array} \right. \text{ or } \left\{ \begin{array}{l} F'\left(x^{*}\right) < 0 \\ G'\left(x^{*}\right) > 0 \end{array} \right.$$

In the first case, there would exist ε such that $F\left(x^*-\varepsilon\right) < F\left(x^*\right)$ and $G\left(x^*-\varepsilon\right) > G\left(x^*\right) = c$, which means $x^*-\varepsilon$ is better minimizer. Contradiction. In the second case, there would also exist ε such that $F\left(x^*+\varepsilon\right) < F\left(x^*\right)$ and $G\left(x^*+\varepsilon\right) > G\left(x^*\right) = c$, which implies means $x^*+\varepsilon$ is better minimizer. Contradiction. Hence (1) is also true.

A.2 Summary of EC750

Kuhn-Tuker and Envelop Theorem

Static Maximization Problem		
$\max_{x} F(x) \text{s.t. } c \ge G(x)$		
Kuhn-Tucker Theorem: Assumption $G'(x^*) \neq 0$		
Lagrangian	$L = F(x) + \lambda \left[c - G(x)\right]$	
First order condition	$L_x = 0 \Rightarrow F_x - \lambda G_x = 0$	
constraint	$L_{\lambda} \ge 0 \Rightarrow c - G(x) \ge 0$	
Non-negativity condition	$\lambda \ge 0$	
Complementary slackness	$\lambda \left[c - G\left(x \right) \right] = 0$	
Envelope Theorem: Assumption $G_1[x^*(\theta), \theta] \neq 0$		
Maximum value function	$V(\theta) = \max_{x} F(x, \theta)$ s.t. $c \ge G(x, \theta)$	
optimal value	$x^*(\theta) = \arg\max_x F(x, \theta)$ s.t. $c \ge G(x, \theta)$	
associated multiplier	$\lambda^*\left(heta ight)$	
Envelope Theorem	$V'(\theta) = F_2[x^*(\theta), \theta] - \lambda^*(\theta) G_2[x^*(\theta), \theta]$	

Static Minimization Problem		
$\min_{x} F(x) \text{s.t. } G(x) \ge c$		
Kuhn-Tucker Theorem: Assumption $G'(x^*) \neq 0$		
Lagrangian	$L = F(x) - \lambda [G(x) - c]$	
First order condition	$L_x = 0 \Rightarrow F_x - \lambda G_x = 0$	
constraint	$L_{\lambda} \le 0 \Rightarrow -G(x) - c \le 0$	
Non-negativity condition	$\lambda \ge 0$	
Complementary slackness	$\lambda \left[c - G\left(x\right)\right] = 0$	
Envelope Theorem: Assumption $G_1[x^*(\theta), \theta] \neq 0$		
Mnimum value function	$V(\theta) = \min F(x, \theta)$ s.t. $G(x, \theta) \ge c$	
optimal value	$x^*(\theta) = \arg\min_x F(x, \theta)$ s.t. $G(x, \theta) \ge c$	
associated multiplier	$\lambda^*\left(\theta\right)$	
Envelope Theorem	$V'(\theta) = F_2[x^*(\theta), \theta] + \lambda^*(\theta) G_2[x^*(\theta), \theta]$	

Maximium Principle

Discrete Dynamic Maximization problem		
$\max_{\substack{\left\{z(t)\right\}_{t=0}^{T},\left\{y(t)\right\}_{t=1}^{T}\\s.t.}} \sum_{t=0}^{T} \beta^{t} F\left(y\left(t\right),z\left(t\right),t\right) dt$		
$y_t + Q(y_t, z_t,$	$t) \ge y_{t+1}$ for all $t = 0, 1, \dots, T$	
	for all $t = 0, 1, \dots, T$	
y(0) is given		
$y_{T+1} \ge y^*$		
Maximur	n Principle (Current Value)	
	$H\left(y_{t},\pi_{t+1}\right)$	
Current Value Hamiltonian	$= \max_{z_{t}} \beta^{t} F(y_{t}, z_{t}, t) + \pi_{t+1} Q(y_{t}, z_{t}, t)$	
	s.t. $c \geq G(y_t, z_t, t)$	
FOC for z_t	$\frac{\partial H}{\partial z} = 0$ for all $t = 0, 1, \dots, T$	
Envelope Thm. for π_t	$\pi_{t+1} - \pi_t = -\frac{\partial H}{\partial y_t} \text{for all } t = 1, \dots, T$ $k_{t+1} - k_t = -\frac{\partial H}{\partial \pi_{t+1}} \text{for all } t = 0, 1, \dots, T$	
Envelope Thm. for k_t	$k_{t+1} - k_t = -\frac{\partial H}{\partial \pi_{t+1}}$ for all $t = 0, 1, \dots, T$	
Initial condition	y_0 is given	
Transversality condition	$\pi_{T+1} \left[y_{T+1} - y^* \right] = 0$	
Maximum Principle (Present Value)		
	$H\left(y_{t},\pi_{t+1}\right)$	
Present Value Hamiltonian	$= \max_{t} \beta^{t} \left[F\left(y_{t}, z_{t}, t\right) + \pi_{t+1} Q\left(y_{t}, z_{t}, t\right) \right]$	
	s.t. $c \geq G(y_t, z_t, t)$	
FOC for z_t	$\frac{\partial H}{\partial z} = 0$ for all $t = 0, 1, \dots, T$	
Envelope Thm. for π_t	$\beta^t \pi_{t+1} - \beta^{t-1} \pi_t = -\frac{\partial H}{\partial x_t}$ for all $t = 1, \dots, T$	
Envelope Thm. for k_t	$k_{t+1} - k_t = -\frac{\partial H}{\partial \beta^t \pi_{t+1}} \text{for all } t = 0, 1, \dots, T$	
Initial condition	y_0 is given	
Transversality condition	$\beta^T \pi_{T+1} \left[y_{T+1} - y^* \right] = 0$	

	ous Dynamic Maximization problem	
$\max_{\substack{\{z(t)\}_{t=0}^T,\{y(t)\}_{t=0}^T\\s.t.}}\int_{t=0}^T e^{-\rho t}F\left(y\left(t\right),z\left(t\right),t\right)dt$ s.t. $Q\left(y\left(t\right),z\left(t\right),t\right)\geq y\left(t\right)\text{for all }t\in[0,T]$ $c\geq G\left(y_t,z_t,t\right)\text{for all }t\in[0,T]$ $y\left(0\right)\text{ is given}$ $y\left(T\right)\geq y^*$		
Max	ximum Principle (Current Value)	
Current Value Hamiltonian	$H(y(t), \pi(t))$ $= \max_{z(t)} e^{-\rho t} F(y(t), z(t), t) + \pi(t) Q(y(t), z(t), t)$ s.t. $c \ge G(y(t), z(t), t)$	
FOC for $z(t)$	$\frac{\partial H}{\partial z(t)} = 0 \text{for all } t \in [0, T]$ $\dot{\pi}(t) = -\frac{\partial H}{\partial y(t)} \text{for all } t \in [0, T]$ $\dot{k}(t) = -\frac{\partial H}{\partial \pi(t)} \text{for all } t \in [0, T]$	
Envelope Thm. for $\pi(t)$	$\dot{\pi}(t) = -\frac{\partial H}{\partial y(t)}$ for all $t \in [0, T]$	
Envelope Thm. for $k(t)$	$\dot{k}(t) = -\frac{\partial H}{\partial \pi(t)}$ for all $t \in [0, T]$	
Initial condition	y_0 is given	
Transversality condition	$\pi\left(T\right)\left[y\left(T\right) - y^*\right] = 0$	
Maximum Principle (Present Value)		
Present Value Hamiltonian	$H\left(y\left(t\right),\pi\left(t\right)\right) = \max_{z\left(t\right)} e^{-\rho t} \left\{ F\left(y\left(t\right),z\left(t\right),t\right) + \pi\left(t\right)Q\left(y\left(t\right),z\left(t\right),t\right) \right\}$ s.t. $c \ge G\left(y\left(t\right),z\left(t\right),t\right)$	
FOC for $z(t)$	$\frac{\partial H}{\partial z\left(t\right)} = 0$	
Envelope Thm. for $\pi(t)$	$\frac{\partial H}{\partial z(t)} = 0$ $\frac{de^{-\rho t}\pi(t)}{dt} = -\frac{\partial H}{\partial y(t)}$ $\dot{k}(t) = -\frac{\partial H}{\partial e^{-\rho t}\pi(t)}$	
Envelope Thm. for $k(t)$	$\dot{k}\left(t\right) = -\frac{\partial H}{\partial e^{-\rho t}\pi\left(t\right)}$	
Initial condition	$y_0 \text{ is given}$ $e^{-\rho t}\pi(T)[y(T) - y^*] = 0$	
Transversality condition	$e^{-\rho t}\pi\left(T\right)\left[y\left(T\right)-y^{*}\right]=0$	

Dynamic Optimization

Discrete Dynamic Maximization problem with Perfect Foresight			
$\max_{\substack{\{z(t)\}_{t=0}^{\infty},\{y(t)\}_{t=1}^{\infty}\\ s.t.}} \sum_{t=0}^{T} \beta^{t} F\left(y\left(t\right),z\left(t\right),t\right) dt$			
	$y_t + Q(y_t, z_t, t) \ge y_{t+1}$ for all $t = 0, 1,$		
	$g_t + Q\left(y_t, z_t, t\right) \geq g_{t+1}$ for all $t = 0, 1, \dots$ $c \geq G\left(y_t, z_t, t\right)$ for all $t = 0, 1, \dots$		
y(0) is given			
	Dynamic Programming		
Bellman Equation	$v(y_t, t) = \max_{z_t} F(y_t, z_t, t) + \beta v(y_{t+1}, t+1)$ s.t. $c \ge G(y_t, z_t, t)$		
	$= \max_{z_{t}} F(y_{t}, z_{t}, t) + \beta v (y_{t} + Q(y_{t}, z_{t}, t), t + 1) + \lambda_{t} [c - G(y_{t}, z_{t}, t)]$		
FOC for z_t	$F_z + \beta v' Q_z - \lambda_t G_z = 0$ for all $t = 0, 1, \dots$		
Envelope Thm. for y_t	Envelope Thm. for y_t $v' = F_y + \beta v' (1 + Q_y) - \lambda_t G_y$ for all $t = 1,$		
Binding constraint $y_t + Q(y_t, z_t, t) = y_{t+1}$ for all $t = 0, 1,$ Comp. Slackness $\lambda_t [c - G(y_t, z_t, t)] = 0$ for all $t = 0, 1,$			
Comp. Slackness $\lambda_t \left[c - G \left(y_t, z_t, t \right) \right] = 0$ for all $t = 0, 1, \dots$			
Stochasitc Discrete Dynamic Maximization problem			
$\max_{\substack{\{z(t)\}_{t=0}^{\infty}, \{y(t)\}_{t=1}^{\infty}\\ s.t.}} E_0 \sum_{t=0}^{\infty} \beta^t F(y(t), z(t), t) dt$			
$\varepsilon_{t+1} = \rho \varepsilon_t + \eta_{t+1} \text{for all } t = 0, 1, \dots$			
$y_t + Q(y_t, z_t, \varepsilon_{t+1}, t) \ge y_{t+1}$ for all $t = 0, 1,$			
y(0) is given			
Dynamic Programming			
Bellman Equation	$v(y_{t}, \varepsilon_{t}, t) = \max_{z_{t}} F(y_{t}, z_{t}, t) + \beta E_{t} [v(y_{t+1}, \varepsilon_{t+1}, t+1)] $ $= \max_{z_{t}} F(y_{t}, z_{t}, t) + \beta E_{t} [v(y_{t} + Q(y_{t}, z_{t}, \varepsilon_{t+1}, t), \varepsilon_{t+1}, t+1)]$		
FOC for z_t	$F_z + \beta E_t \left[v'Q_z \right] = 0 \text{for all } t = 0, 1, \dots, T$		
Envelope Thm. for y_t	$Y_z + \beta E_t [v Q_z] = 0$ for all $t = 0, 1, \dots, T$ $v' = F_y + \beta v' (1 + Q_y)$ for all $t = 1, \dots, T$		
Binding constraint	$y_t + Q(y_t, z_t, \varepsilon_{t+1}, t) = y_{t+1} \text{for all } t = 1, \dots, T$		
	$g_t : \mathcal{C}(g_t, \sim_t, \sim_{t+1}, \sim) g_{t+1} \text{for all } t = 0, 1, \dots, 1$		

Appendix B

Appendix II EC751

Afterword

Acknowledgements

Bibliography