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Foreword

Although I have spent more than 30 hrs to prepare this review notes (average 3hrs

per chapter), I cannot promise you this note is error-free. It would be best to question

anything seems unusual or unfamilar.

The �rst thing I want to share with you is not the technical knowledge of how to

calculate but how to study econometrics e¢ ciently?

1. Learn the assumption of models

2. Try to understand the proofs (but don�t overdo it!)

3. Memorize the main results

4. Remember the limitation, testing, forecasting of the models

5. Do all exercises available! (including past papers!)

Instead of putting the material reference at the back, I decide to put it in the front

cover:

1. Econometric Analysis (5th edition) by William H. Greene, Prentice Hall

2. Introduction to Linear Regression Analysis (3rd edition) by Douglas C. Mont-

gomery, Elizabeth A. Peck and G. Geo¤rey Vining, Wiley Interscience Publication

3. Statisical Inference (2nd edition) by Geogre Casella and Roger L. Berger, Duxbury

Finally, let me wish you good luck in exam!
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1 A Review of Probability and Statistics

1.1 Sample space, random experiment, events and probability

Sample Space
Random Experiment

=) Elementary Event combination=) Event
assignment
=) Probability

1. Sample Space: all possible outcomes of random experiment

2. Random Experiment: (i) all outcome known (ii) particular trial not known (iii) can

be repeated

3. Elementary Event: particular outocme of random experiment

4. Event: elementary event(s), subset of sample space

5. Probability: numbers from 0 to 1 assigned to events

1.2 Kolmogorov�s de�nition of probability

This is a technical de�nition to eliminate any possible paradox and ambiguity.

1. 0 � Pr (E) � 1

2. Pr(S) = 1

3. Pr(A [B) = Pr (A) + Pr (B) if A \B = ?:

where S is sample space, E; A; B are events. [ and \ means union and intersection.
? means null set.

1.3 Conditional Probability and Statistical Independence

This can be thought as reduction in sample space. If we know something has hap-

pened, we know something has not happened. Therefore, the original probability should

be revised. The revision is done by using the concept of conditional probability.

Pr (A j B) = Pr(A \B)
Pr (B)
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From conditional probility, we can derive the independence concept. If realization of

event A has no e¤ect on event B, we call the two event statistically independent. That

is,

Pr (A j B) = Pr (A) and Pr (B j A) = Pr (B)
[) Pr(A \B) = Pr (A)� Pr (B)]

1.4 Random Variable

This is to abstract the concept of events. Here, we usually assume events to be

numbers rather than heads, tails, diamond, club, heart and spade.

Formally, random variable is the method(function) of assigning non-numbers (events)

to numbers numbers (value of random variable).

Elementary Event random variable
=) Numbers

If numbers representing events are discrete, it is discrete random variable.

If numbers representing events are continuous, it is continuous random variable.

How can we describe a random variable? Distribution function.

F (a) = Pr (X � a)

How distribution function correlates probability?

Probability mass function for discrete random variable.

Pr (X = a) = f (a)

F (a) =
X
x�a

f (x)

Probability density function for continuous random variable.

Pr (a � X � b) =

Z b

a

f (x) dx

F (a) =

Z a

�1
f (x) dx
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How to complicate a random variable? Add more random variables. Then you have

to use joint distribution to describe.

F (a; b) = Pr (X � a; Y � b)

Of course, you could get joint density function if both random variables are continuous

where you will need to compute double integration or partial di¤erentiation to play around

with them.

1.5 Functions on random variable

1. Mean (1st moment, mathematical expectation)

Central Tendency: A single number to represent data.

E(X) =

8<:
P
x2S

xf(x)R
S
xf(x)dx

if X is discrete

if X is continuous

2. Variance (2nd moment about mean)

Dispersion: A number to describe the spread of data. Accuracy of mean.

V ar (X) = E(X � E(X))2 =

8<:
P
x2S
(x� E (X))2f(x)R

S
(x� E (X))2f(x)dx

if X is discrete

if X is continuous

3. Covariance

Relationship between two variables. Positive means moves in the same direction

and negative means move in opposite direction. Zero means no (linear) relationship.

Cov (X; Y ) = E [(X � E (X)) (Y � E (Y ))] = E (XY )� E (X)E (Y )

4. Correlation coe¢ cient

Normalized covariance. Only assumes value from [0; 1] :The rescale is done by di-

viding standard deviation of both variables.

�xy =
Cov (X; Y )p

V ar (X)
p
V ar (Y )
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2 Special probability distribution

This chapter only covers continuous random variables. Bascially, most of all distrib-

utions needed are all variation of normal distribution.

Normal
Z = X��

�

�!
Standard

Normal

�2k =
kP
i=1

Zi

�! Chi-square

Student�s t

% tk =
Zp
�2k=k

& F = �2m=m
�2n=n

F

2.1 Uniform distribution

By the name, we know its density should be uniform in the sample space. So, if

X � U (a), the density function should be

f (x) =

(
1
a

0

if 0 � x � a

otherwise

Use: to model event that might happen in equally likely manner

Exponential distribution

Again, by the name, we know its density should be in exponential form. So, if

X �exponential(�), the density function should be

f (x) =

(
1
�
e�x=�

0

if 0 � x <1
otherwise

Use: to model radioactive decay, time for light bulb to burn out

2.2 Normal distribution

First used by de Moivre to approximate binomial distribution for large number of

trial (large n). Later, Laplace and Gauss used this to model the errors of experiment.

Therefore, it is also sometimes referred as Gaussian distribution. The density function

might look intimidating at the �rst hand, but it will be much friendly amd �normal�if we

look at it more.
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If X � N (u; �2) ;the density function will be

f (x) =

(
1

�
p
2�
exp

n
�1
2

�
x��
�

�2o
0

if �1 < x <1
otherwise

Uses: IQ, height, wegiht and many many.... that�s why we call it �normal�. By the

way, remember it can be used to model error. So in many model, error is usually modelled

by normal distribution.

2.3 Standard normal distribution

One interesting and convenient property of normal distribution is that it is completely

characterized by its mean � and variance �2. So, is there any basic form? Yes, set � = 0

and �2 = 1:In the other words, standard normal is N (0; 1) :

Hence, if X � N (0; 1) , the density function would then be

f (x) =

(
1p
2�
exp

�
�1
2
x2
	

0

if �1 < x <1
otherwise

Uses: Save the Earth. Honestly, it has no special use in statistics. But it serves a

great job to environmental protection! Since the density function could not be handled

by pencils, we need to check tables for calculation. Given any normal distribution can be

standardize by transformation (Z = X��
�
), only one normal table is need.

2.4 Log-normal distribution

A natural extension of normal distribution. It limits the sample space to non-negative

real numbers and changes it from symmetric to left-skewed.

Mathematically, if X is normal, Y = lnX is lognormal. The density function of Y is

so complicated that I dont remember so I think you might wish not to memorize it.

f (y) =

8<: 1
y�
p
2�
exp

�
�1
2

�
ln(y)��

�

�2�
0

if 0 < y <1
otherwise

Uses: stock variation, personal incomes...things that cannot assume negative value.
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2.5 Chi-square distribution

It should beX2 distribution rather than �2 distribution. This error is due to the print-

ing error in taking sorts. Actually, the X is actually the standard normal distribution.

So, �2 is actually Z2 where Z is standard normal.

To generalize this, we add a parameter degree of freedom k to represent the number

of Z2 added together. Therefore, �21 = Z21 ; �
2
2 = Z21 + Z21 ; :::; �

2
k = Z21 + Z22 + :::+ Z2k :

Its distribution function is so complicated that I dont write it down.

Uses: famous �2 test

Remark: �21 = Z2 and �22 = exponential(� = 2)

2.6 Student�s t-distribution

Student is a �ctitious name becasue the inventor, Gosset, was not allowed to use his

own name. Anyway, all you need to know is to remember is that if it is formed by having

a standard normal random variable over square root of Chi-squared random variable

divided by its degree of freedom. That is,

tk =
Zp
�2k=k

One more thing to remember it is something similar to normal distribution though

its tail is much thinner. Forget about the density function. Don�t ask me on that stu¤!

Uses: famous t-test

2.7 Cauchy distribution

Special case for t-distribution. It is when the k of �2k equal to one. In the other words,

it is also the ratio of two standard normal random variables. Again, forget about the

density function.

Mathematically,

R =
Zp
�21=1

=
Z1
Z2
:

Use: an example to show mean and variance need not be �nite

6



2.8 F distribution

Generalized case for t-distribution or ratio of two chi-square random variables. Is

there anyone able to write down the density function without looking at the book? I

dout it.

Mathemathically,

Fm;n =
�2m=m

�2n=n

Uses: famous F test

Remark: F1;n = (tn)
2
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3 Estimation and Hypothesis testing

3.1 Estimation: Estimator and Estimate

Why we need estimate? It is not possible to know it or it is too costly to know it.

population
Sampling
=) sample estimator

=) estimate

Estimator is the rule we do the estimation. That is, the way how we guess it.

Estimate is the result of estimation. It is our guessed result.

Technically, estimator is function of sample data and estimate is value of the function.

3.2 Property of Estimator

1. Unbiasedness

Average of our estimates from many samples equal to the true value.

E
�
X̂
�
= �

Remark 1 Asymptotically unbiased: when sample size is large, it becomes unbiased.

lim
n!1

E
�
X̂
�
= �

2. Consistency

Estimate from very large sample equal to the true value.

lim
n!1

Pr
����X̂ � �

��� < "
�
= 1

3. E¢ ciency

Variance of estimator is low. A is more e¢ cient than B if

V ar (X) < V ar (B)

3.3 Law of Large Numbers and Central Limit Theorem

Assume random variables are independent and identically distributed, if the mean

and variance of random variables are �nite, then we have LLN and CLT.
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1. Law of large Numbers

Average of sample mean would be close to true mean when the sample size is large.

2. Central limit theorem

Distribution of sample mean would be normally distributed when sample size is

large. The mean of distribution is of course the true mean while the variance is

equal to original variance of random variable but divided by sample size. This means

if the sample size become larger, our estimate would likely to be more accurate.

3.4 Hypothesis Testing

1. Null hypothesis H0 v.s. alternative hypothesis H1

Null hypothesis is the initial assumption. Usually from theory or custom belief.

This is what we want to test

Alternative hypothesis is another assumption which we would like to believe (from

theory or custom belief)it is true if the null hypothesis is rejected. It doesn�t need

to be the complement of the null.

2. Process of test

(a) Assume the null hypothesis is correct, we can derive a few of conclusions. (run

models, do the computation and get distribution of parameters)

(b) Check whether the conclusions �t the evidence we have based on a prescribed

rule. (compare whether data deviates too much from our model too much or

not)

i. If it �ts the rule, we dont reject the null.

ii. If it dont �t the rule, we reject the null.

Remark 2 The procedure is similar to legal process. We assume the defendant is
innocent at �rst. Evidences are presented in the courtroom. If the proof is su¢ cient

for judge to believe it is highly improbable for the defendant to be innocent, the

defendant is convicted to be guilty of the charge.

Remark 3 This kind of procedure is quite similar to mathematical proof by con-
tradiction. First we assume the conclusion is incorrect. If we can derive a contra-

diction, then we have proof the theorem. In hypothesis testing, since we are dealing
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with sampling and data, there are bound to be some stochastic elements in it, so,

the evidence usually cannot fully support or reject the claim. To make decision, we

must have some rules to decide as judge in courtroom. For rules to work e¢ ciently,

we are bound to commit some kind of errors.

3. Type I error, Type II error and signi�cance level

Type I error is the mistake we make when we have rejected the null hypothesis

which is actually correct.

Pr (Type I error) = Pr (reject null j H0 is true) = �

Probability of committing a type I error is also called signi�cance level.

Type II error is the mistake we make when we have not rejected the null hypothesis

which is actually false.

Pr (Type II error) = Pr (not reject null j H0 is false) = �

4. General testing principle

If we want to test whether a random variable follows a particular distribution, what

we can do to test it? To think it in more concrete term, you want to judge whether

a coin is biased, you would like to toss it for a number of times to test whether the

number of tails and number of heads is equal or not. When you �nd out the tails is

signi�cantly more than heads, you can draw the conclusion. However, how large the

di¤erence would be �signi�cant�enough to lead you to the conclusion if you have

tossed 100 times? Five, ten, twenty or thirty? Will you reject the unbiasedness

assumption if there are 60 heads coming out?

For a student who has learnt elementary probability course, he might come up with

the rule of calculating the probability of getting that result. He reasons that if the

coing is unbiased, the number of headsX coming out is a binomial distribution with

n = 100 and p = 1=2: He knows that the mean number of head is 50 so that the

deviation from mean is 10. To answer the given question, he simply �gures out what

is the probability that the deviation is more than 10. Using normal approximation,

he �nd out that the probability is less than 0.05. Therefore, he concludes that given

this low probability, the coin should not be unbiased.

10



5. Normal test, t-test, chi-square test, F test....

Now, if we change the underlying distribution of random variable of above example

from binomial distribution to normal distribution. Then we will have the normal

test. If we change to student�s t distribution, it is T test. If we change to F

distribution, it is F test. If we change to chi-square distribution, it is chi-square

test.

Well, am I telling you all those stu¤ that have troubled you so long are actually the

same? Unfortunately, yes. All we need to do is to �nd out the probability under

di¤erent distributions.

11



4 Simple Linear Regression Model

4.1 Fitting a line

We want to using x to estimate y. Mathematically, we wish to �nd out the functional

form of this equation:

y = f (x)

To simplify the case, we assume the relationship is linear in x:

y = a+ bx

That is we want to �t a line in the scatter graph of x and y. In the other words, we

want to �nd out the best a and b.

In primary school, we all learn about direct proportionality. For instance, if apple

costs two each, the relationship between cost of apple y and quantity of apples x is taking

a = 0 and b = 2:

y = 2x

Of course, the world is not always perfect as the above cases, there are so many small

factors which may be negligble alone but signi�cant in sum (principle of integration!).

Collectivelly, they are called luck or error. Therefore, the model would change from

deterministic model to stochastic one by adding an error term.

y = a+ bx+ "

The error term " represent factors that is not capture by x:

Now, we might understand the term �simple linear regression model�.

Simple : only one variable x is used in explaining y

Linear: the relationship is linear (no exponential, no power, no logarithm)

Regression model: with error terms in mean zero

4.2 How to �t?

What is the principle to estimate the value of a and b so that our relationship is most

�tted? What do we mean by the most �t?

12



Since we want to estimate y = f (x) ; we wish to minimize

error = jy � f (x)j

However, manipulation of absolute value is di¢ cult. We try to minimize the sqaure

of error.

error2 = (y � f (x))2 = (y � a� bx)2

This is so-called ordinary least square(OLS) estimation method. To visualize this

method, one can think that we are trying to �t a line such that the vertical distances

between the point and line is minimized.

4.3 Assumptions

1. The underlying relationship between y and x is assumed to be

yt = �0 + �1xt + ut

This is what we have said in above using only x to explain y in linear fashion with

error term to capture non-modelled factor. Of course, we could use more variables

to explain y. Therefore, you will have learn that in the next chapter.

2. Error has zero mean.

E (ut) = 0 for all t:

We have to assume our model in the average to be correct. Otherwise, what is the

use to estimate it?

3. Value of explanatory variable xt cannot be all same. Well, without variation of x,

what is used to explain the variation in y.

4. Explanatory variable xt is given and non-random. This implies

E (xt) = xt for all t:

Together with zero-mean error assumption, we have

Cov (xt; ut) = 0:

13



This is to simplify the calculation. Of course, this assumption will be relaxed a little

bit by allowing the explanatory variable to interact with the explained variable.

5. Error has constant variance. Its technical term is homoskedasticity.

V ar (ut) = �2 for all t:

This is also to simplify the calculation. Since it usually does not satisfy in economics,

you will have to relax this assumption after the next chapter.

6. Errors are not serially correlated. Its technical term is serial Independence.

Cov (ut; us) = 0 for all t 6= s:

This is also to simplify the calculation. As for data collected across time (time

series data), this assumption usually fails to hold. Again, we will revisit it later.

4.4 Results

OLS means that we are going to get the value of �0 and �1 by minimizing the squared

error:

min
�0;�1

X
(yt � �0 � �1xt)

2

Using simple di¤erentiation technique, we will get(
�̂1 =

P
(x��x)(y��y)P
(x��x)2

�̂0 = �y � �̂1�x

The estimator �0 and �1 have the following properties:

1. Unbiasedness

2. Consistency

3. E¢ ciency among linear estimators

4. Passing through (�x; �y)

14



4.5 Goodness of �t

Given the regression, how could we interpret the relationship? Is the �tted model

suitable? If x is directly proportional to y; then the regression result is no doubt a prefect

�t. If both x and y are actually independent of each other, we would say the regression

failed.

To measure the linear �ttness of two variables, we want to �nd out the portion of

variation of y is explained by variation of x: However, one should note that even if

we don�t do any regression, we could still estimate y by simply using the mean of y, �y.

Therefore, the comparison should be set to see how much the improvement is by including

x in our reasoning. One way to do it is to take the ratio of explained portion to portion

to be explained.

R2 =
explained portion

portion wished to be explained
=

P
(ŷ � �y)2P
(y � �y)2

where ŷ; y and �y are respectively the y�s �tted value, actual value and mean. The

reason of using the square instead of absolute one is same as the reason using OLS method.

There are three technical terms about R2: We de�ne

ESS =
X

(ŷ � y)2 ;RSS =
X

(ŷ � �y)2 ;TSS =
X

(y � �y)2

Therefore, we have

R2 =
RSS

TSS
= 1� ESS

TSS

One can easily prove that

TSS = RSS + ESS

Therefore, we have

0 � R2 � 1

where R2 = 1 implies perfect �t while R2 = 0 implies no linear relationship.

Graphically, RSS is sum of sqaured distance between �tted point and the mean of y,

which is the portion we have explained. ESS is the sum of squared distance between the

actual data point and the �tted point, which is the portion we haven�t explained. TSS

is the sum of squared distance between actual data point and the mean of y;which is the

portion we wish to explain. Now, it is immediately clear why we de�ne R2 to be ratio of
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RSS to TSS.

4.6 Hypothesis Testing

Although R2 provides a good measure on the �ttness of the model, it doesn�t provide

us the criteria to say this model is acceptable or not. Therefore, we might want to perform

some hypothesis testing to ensure the model is useful before we use it in estimation and

prediction.

As I have said in previous section, all we need to know before hypothesis testing is

to know what is distribution of test statistic. Since we have not say anything about

distribution, we cannot do any testing yet. So now let us assume the error follows normal

distribution.

ut � N
�
0; �2

�
The �rst and foremost test is to �nd out whether our regression is actually more useful

than using only mean of y. Therefore, the �rst test is to test whether �1 = 0 or not.

That is,

H0 : �1 = 0

H1 : �1 6= 0

To test this hypotheis, we need to know the distribution of �̂1: Given the assumption

of normality of error, if we know the value of �2; �̂1 follows normal distribution with zero

mean (by null hypothesis) and variance equal to

V ar
�
�̂1

�
=

�2P
(x� �x)2

Then, we can do the normal test with the test statistic equal to

W =
�̂1 � �1r
V ar

�
�̂1

� :
However, it is usually we don�t know the value of �2; we need to use the sample
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estimate of �2 to estimate V ar
�
�̂1

�
:

\
V ar

�
�̂1

�
= b�2 = P

u2t
T � 2

Then this test statistic

W =
�̂1 � �1r
\

V ar
�
�̂1

�
would follow student�s t distribution with (T � 2) degree of freedom.
Of course, we could also test whether �0 = 0: The procedure would be nearly the

same except the variance of �̂0:

4.7 Prediction and Forecasting

Now we come to the application of the regression model. It is used to do prediction

and forecasting. This is why we need to estimate the formula of getting the value of y

based on the value of x. The interpretation of coe¢ cient of intercepts and slope would

be the same as the usual equation.

Of course, using the equation alone would not be fruitful enough given that we have

not specify the accuracy of our estimation. Therefore, more often than not, we would

like to given interval estimate rather than point estimate.
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5 Multiple Regression

5.1 Fitting a plane: More explanatory variables

Simple linear regression uses one variable xt to explain another variable yt:

yt = �0 + �1xt + ut

The underlying assumption is that other factors are included in error terms "t and the

error term is insigni�cant and random (E (ut) = 0). However, this assumption may not

be good enough to model situation where there are more than one explanatory factors

a¤ecting the explained variable. So, we are using more than one variable to estiamte yt:

Mathematically, we are trying to estimate yt using k variables x1t; x2t; x3t; :::; xkt:We

wish to estimate the functional form of:

yt = f (x1t; x2t; x3t; :::; xkt)

Particularly, we use the function form to estiamte:

yt = �0 + �1x1t + �2x2t + �3x3t + :::+ �ktxkt + ut

Graphically, we are �tting a k�dimensional hyperplane by changing the values of
�0; �1; �2; :::�k.

5.2 How to �t?

The estimation method is again ordinary least square (OLS), which tries to minimize

sum of squared errors.

min
X

error2 = min
X

(yt � f (x))2

= min
X

(y � �0 � �1x1t � �2x2t � �3x3t � :::� �ktxkt)
2

5.3 Assumptions

Similar to linear regression. One important additioal assumption is no perfect multi-

collinearity which we would discuss at the end of this section.
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5.4 Results

Using simple calculus, we are solve k�simultaneous equations:

min
�0;�1;�2;:::�k

TX
t=1

(yt � �0 � �1x1t � �2x2t � �3x3t � :::� �ktxkt)
2

However, it is rather tedious to solve so many equation each time. Therefore, to

minimize the calculatioin procedure, let us introduce matrix.

Let Y =

26666664
y1

y2

y3

:

yT

37777775 , X =

26666664
1 x11 x21 x31 :: xk1

1 x12 :: :: :: ::

1 :: :: :: :: ::

1 :: :: :: :: ::

1 x1T x2T :: :: xKT

37777775, � =
26666664
�0

�2

�3

:

�K

37777775 and u =
26666664
u1

u2

u3

:

uT

37777775
Note that Y and X are data and � is the coe¢ cient vector to be estimate.

Then the regression model becomes

Y = �X + u

The minimization of sum of squared errors becomes

min
�
u0u = min

�
(Y � �X)0 (Y � �X)

Using matrix calculus, the solution would then

�̂ = (X 0X)
�1
X 0y

One can show the variance of �̂ would be

V ar
�
�̂
�
= � (X 0X)

�1

The estimator properties would be still unbiased, consistent and most e¢ cient linear

estimator.

5.5 Goodness of �t

It is tempting to use R2 to measure the goodness of �t. However, it is not good as R2

increases automatically with the number of regressor (explanatory variable). We cannot
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judge whether adding another explanatory variable is better �t or not by looking at R2:

We need to do some adjustement.

R
2
= 1� T � 1

T � k � 1
�
1�R2

�
The adjustment to make penalty for more variable. If k increases without changing

the value of R2; the adjusted R
2
would decrease.

5.6 Hypothesis Testing

In simple regression, the �rst test is to do the test on whether �1 is zero or not. This

intends to �gure out whether regression is useful than mean or not.

Now, in multiple regression, if we wish to do the same test, we need to test whether

�1 = �2 = ::: = �K = 0 or not. Thus, instead of testing one parameter alone, we need to

have a joint-test.

H0 : �1 = �2 = ::: = �K = 0

H1 : at least one of �1; �2; :::; �K not equal to zero

Instead of t-test, we need to use F-test.

F =
(ESS0 � ESS1) = (df0 � df1)

ESS1=df1

where ESS0 and df0 are respectively the residual sum of square and degree of freedom

under null hypothesis while ESS1 and df1 are respectively the residual sum of square and

degree of freedom under alternative hypothesis.

The resonale behind is that if the null is true then the error under null should be very

closed to the alternative hypothesis.

Of course, if we simply want to test whether a particular one is zero or not, we could

still use the t-test.

5.7 Partial Regression: Bivariate and Trivariate Model

Co¢ cients of regression with two variables could be obtained by using four regression

with one variables. In the other words, we could directly estimate this:

yt = �0 + �1x1t + �2x2t + ut
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Or we could �rst obtain � t and �t from the following system:

x1t = �0 + �2x2t + � t

x2t = 
0 + 
2x1t + �t

Then regress them on yt :

yt = �0 + �2� t + !t

yt = �0 + �2�t +  t

where

�1 = �2 and �2 = �2

and �0 can be obtained through solving the taking the mean of regression equation.

�0 = yt � �1x1t + �2x2t

5.8 Model misspeci�cation

Therer are two common errors:

1. Inclusion of irrelvant variables (omit-variable bias)

OLS estimate is still unbiased.

2. Exclusion of pertinent variables

OLS estimat is biased.

5.9 Multicollinearity

Multicollinearity means that correlation among explanatory variables. No doubt, we

wish to have explanatory variables to be as uncorrelated as possible. If their variations

are so similar, why just use of one them?

If they correlate perfectly, the estimation would fail. In partial regression, if two

variables are perfectly correlated, there the residuals are zero and we cannot estimate the

coe¢ cient.

If they correlate too much, we would face the following problems:
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1. Large variance of OLS estimates

2. Wider con�dence Intervals

3. Insigni�cant t-ratio

When we know there is problem of multicollinearity?

1. examine the correlation of the raw data

2. High R2 but low t

How to remedy multicollinearity?

1. adjust the model from economic theory

2. use �rst di¤erences or take ratios

3. drop variables

4. increase sample size

5. neglect it
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6 Dummy variable

6.1 Cardinal data v.s. Ordinal data v.s. Nominal data

Discrete or continuous data such as height of man, income and age could be easily

�tted into regression model. Their numerical values and intervals are well-de�ned since

they are cardinal measurement. However, for ordinal(or rank) measurement such as job

rank or preference, and nominal(or categorial) measurement such as gender or race, their

numerical values and the meaning of interval is not so well-de�ned. To cope with the

di¢ culty of assignment of numerical value, more often than not, dummy variable is to

deal with categorial explanatory variable while ordered logit and probit model is applied

to deal with ordinal explained variable.

6.2 Indicator variable

We would still use number to represent nominal data since how can we build a numer-

ical model without using numbers? The number would be assigned by using indicator

variable or dummy variable.

For a categorial variable representing two values such as gender, we would assign the

variable to be zero if it assumes one value and assigned to be one if it assumes another

value.

In terms of formula, for example, if we want to have a sex dummy, we could use the

following indicator variable I:

I =

(
1

0

if sex=Male

if sex=Female

If our nominal variable have more than two categories, then we need more categorial

variable to represent the value. We cannot use the same variable again as the interval is

not de�ned.

If we want to have seasonal dummy, we could use the indicators I1; I2; I3:

spring summer autumn winter

I1 0 1 0 0

I2 0 0 1 0

I3 0 0 0 1
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6.3 Dummy variable trap

However, it should be noted that if we have N categories, we only need to have N � 1
indicator variables only. Cautious readers should have observed this fact from our using

only one sex dummy to represent male and female, and only three dummy to represent

four seasons . If we use more than that, we would fall into dummy variable trap which is

actually the problem of perfect multicollinearity.

Take sex dummy as example, if we use I1 and I2 to represent male and female:

male female

I1 1 0

I2 0 1

Then the two variables value are perfectly correlated with correlation coe¢ cient of

�1.

6.4 Intercept dummy

This kind of model assumes the e¤ect of categorial data only exerts on the intercept.

This assumes the e¤ect of the categorial variable is one-o¤ and independent of other

explanatory variable.

Take the example of sex dummy,

yt = �0 + �1xt + �2I + ut

It =

(
1

0

if sex=Male

if sex=Female

Then this model actually estimate this:

yt = (�0 + �2) + �1xt + ut

yt = �0 + �1xt + ut

if sex=Male

if sex=Female

Therefore, the gender only exerts its e¤ect on intercept.

Hypothesis testing H0 : �2 = 0 could be used to test whether there is signi�cant

gender e¤ect.
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6.5 Interaction term: slope dummy

It is sometimes unrealistic to assume the categorial variable would have no e¤ect with

other variable. To model this, we would add interaction term to the system. This kind

of model assumes the e¤ect of categorial data would exerts on both slope and intercept.

Using the example of sex dummy again,

yt = �0 + �1xt + �2I + �3xtI + ut

It =

(
1

0

if sex=Male

if sex=Female

Then this model actually estimate this:

yt = (�0 + �2) + (�1 + �3)xt + ut

yt = �0 + �1xt + ut

if sex=Male

if sex=Female

Hypothesis testing H0 : �2 = 0 and �3 = 0 could be used to test whether there is

signi�cant gender e¤ect at all while H0 : �2 = 0 and H0 : �3 = 0 are respectively used to

test whether there is intercept gender e¤ect and whether there is slope gender e¤ect.
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7 Heteroskedasticity

In regression model we assume the variance of error to be a constant (homeskedastic-

ity).

V ar (ut) = �2 for all t:

However, it has been said that this assumption may not be plausible for many ec-

nomomic applications. Therefore, in this section, we would examine heteroskedasticity,

that is,

V ar (ut) 6= �2 for all t:

7.1 Consequence of heteroskedasticity

1. OLS still unbiased

2. but ine¢ cient

7.2 Solution: WLS, GLS

If we know how the formula of variance, we could correct the heteroskedasticity. For

example, if the variance of error is function of another Zt which is independent of ut; we

can run a corrected regression by �rst dividing all the data by Zt. Mathematically, if

V ar (ut) = �2Z2t

We can change the heteroskedasticity to homoskedasticity by dividing all yt and xt
by Zt and run the regression:

yt
Zt
= �0

1

Zt
+ �1

x1t
Zt
+ �2

x2t
Zt
+ :::+ �k

xkt
Zt
+
ut
Zt

Hence, the variance of error term is constant:

V AR

�
ut
Zt

�
=
1

Z2t
V AR (ut) = �2

This method is called weighted least square (WLS) or generalized least square (GLS)

method.
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7.3 Testing

1. G-Q test (Goldefeld-Quandt test)

We divide the data into two groups and �nd out the variance of errors of two groups:

A and B wherer group A has n1 observations and group B has n2 observations.

If the homoskedasticity holds, variances are should not di¤er signi�cantly. Our

hypothesis is based on assumption group A has lower variance than group B: Hence,

the hypothesis are

H0 : �2A = �2B

H1 : �2A < �2B

The testing statisitic is

Fn1�k;n2�k =
ESSB= (n2 � k � 1)
ESSA= (n1 � k � 1)

Of course, if this

V ar (ut) = �2Z2t

holds, we could sort the data according to the value of Zt and divides the data into

to two groups.

2. B-P test (Breusch-Pagan test)

The test assumes variance of errors can be explained by a group of explanatory

variables Zt:

yt = �0 + �1x1t + �2x2t + :::+ �kxkt + ut

�2t = �0 + �1Z1t + �2Z2t + :::+ �kZpt + vt

If error is homoskedasticity, we should expect �1 = �2 = ::: = �p = 0. Hence, the

hypothesis to be test is

H0 : �1 = �2 = ::: = �p = 0

H1 : at least one of �1; :::�p is not zero
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So the procedure is:

(a) regress yt on x1t; x2t; :::; xkt can get OLS estimates and calculate

�̂2t =
X

û2t

(b) regress û2t
�̂2t
on Z1t; Z2t; :::; Zpt (auxiliary regression)

û2t
�̂2t
= ��0 + ��1Z1t + ��2Z2t + :::+ ��kZpt + vt

(c) perfrom chi-square test with p degree of freedom, the testing statistic isRSS=2.

That is to reject if
RSS

2
> �2p (�)

3. White test

This test is similar to B-P test except that we don�t need to have the knowledge

on what is the formula on variance of error. We assume the error to be function of

explanatory variables. That is, our modelling on variance of error would be square

or multiples of explanatory variables.

yt = �0 + �1x1t + �2x2t + :::+ �kxkt + ut

�2t = �0 + �1x1t + �2x2t + :::+ �kxkt + �k+1x
2
1t + :::+ �2kx

2
2kt

+�2k+1x1tx2t + :::+ � k(k+5)
2

x(k�1)txkt + vt

The hypothesis to be tested is

H0 : �1 = �2 = ::: = � k(k+5)
2

= 0

H1 : at least one of �1; :::� k(k+5)
2

is not zero

So the procedure is:

(a) regress yt on x1t; x2t; :::; xkt can get OLS estimates and calculate

�̂2t =
X

u2t
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(b) regress û2t
�̂2t
on any combinations of x1; :::; xk ,for example, we regress

û2t
�̂2t
on ex-

planatory variables x1t; x2t; :::; xkt squares of them x21t; :::; x
2
2kt and cross multi-

plication of them x1tx2t; :::; x(k�1)txkt(auxiliary regression)

(c) The test is again chi square test with k(k+5)
2

degree of freedom (d.f. depends

on number of regressor used in the auxiliary regression). The testing statistic

is equal to unadjusted R-square R2 times sample size T; that is, TR2. That is

to reject if

TR2 > �2k(k+5)
2

(�)
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8 Serial Correlation

Very often, for time series data (data collected on the same object across time), errors

of di¤erent period are correlated. This kind of phenomenon is called autocorrelation. Take

stock price as an example, the over-optimism or irrational exuberance would stimulate the

stock price for a certain period of time but this kind of exogenous psychological factors are

usually not included in the regression model. Hence, the excluded explanatory variables,

implicitly hidden in error terms, are not random across time which lead to autocorrelation

in errors.

8.1 Consequence

1. still unbiased

2. but inconsistent

3. and may not e¢ cient

8.2 Estimation

1. Cochraine-Orcutt Iterative procedure (COIP)

Suppose we know the model is

yt = �0 + �1x1t + :::+ �kxkt + ut

ut = �ut�1 + "t; � 1 < � < 1

After we know the value of �; then we could take the quasi-di¤erencing on data

directly so as to remove the autocorrelation of the error term. It should be note

that the sample size of data would reduce by 1 as there is nothing to di¤erence for

data at initial time. Formally, the procedure is outline as follows:

(a) Get the value of �:

i. If we already know it, we are done.

ii. If we don�t know it, we are going to estimate it.

We will have to get the estimate �̂ by run two regressions which is very

similar to what we have done in last section.
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A. Estimate the original regression and get the estimate ût

ût = yt � �̂0 � �̂1x1t � :::� �̂kxkt

B. Run auxiliary regression on error and lag of error to get the estimate

�̂t

ût = �ût�1 + "t

(b) lag the regression equation by one period

yt�1 = �0 + �1x1(t�1) + :::+ �kxk(t�1) + ut�1

(c) multiple by � (or �̂)

�yt�1 = ��0 + ��1x1(t�1) + :::+ ��kxk(t�1) + �ut�1

(d) subract it from original regression equation

yt��yt�1 = �0 (1� �)+�1
�
x1t � �x1(t�1)

�
+:::+�k

�
xkt � �xk(t�1)

�
+(ut � �ut�1)

(e) estimate this new equation

y�t = �0 + �1x
�
1t + :::+ �kx

�
kt + u�t

where quasi-di¤erenced data are y�t = yt � �yt�1; x
�
1t = x1t � �x1(t�1); :::; x

�
kt =

xkt � �xk(t�1)

and new coe¢ cients are �0 = �0 (1� �) ; �1 = �1; :::; �k = �k; u
�
t = "t =

ut � �ut�1:

2. Hidreth-lu Search procedure

Nothing special, just search and search. This numerical method is not using regres-

sion to estimate the value of � but directly changing the value of � to minimize the

ESS of the original regression equation.

8.3 Testing

1. Durbin-Watson Test (DW Test)
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This is a test to �nd out whether there is �rst-order autocorrelation. One feature

(or drawback) of this test is we will have inconclusive region which means we cannot

draw any conclusion about the null and alternative hypothesis.

The test statistic is

d =

TP
t=2

(ut � ut�1)
2

TP
t=1

u2t

which converge to 2 if there is no autocorrelation.

There is two types of D-W test where the di¤erence is that whether the alter-

native hypothesis is residuals are positively correlated or residuals are negatively

correlated. The decision to select the alternative hypothesis is based on theory or

preconception.

(a) Alternative hypothesis is residuals are positively correlated

H0 : � = 0

H1 : � < 0

After we �nd out dL and dU from table(both depends on the sample size T

and the number of explanatory variable k). Our decision rule on H0 is

0 � d � dL dL< d < dU dU� d � 4� dU 4� dU< d < 4� dL 4� dL� d � 4
not reject inconclusive reject reject reject

(b) Alternative hypothesis is residuals are positively correlated

H0 : � = 0

H1 : � > 0

0 � d � dL dL< d < dU dU� d � 4� dU 4� dU< d < 4� dL 4� dL� d � 4
reject reject reject inconclusive not reject

2. Lagrange Multiplier Test (LM test)

Although this test does not have inconclusive region, it requires large sample size

to work.
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This method is directly test the value of � by putting the residual equation into the

original equation and test whether it is zero. Suppose our model is

yt = �0 + �1x1t + :::+ �kxkt + ut

ut = �ut�1 + "t; � 1 < � < 1

That is we are going to estimate whether � = 0 in the combined regression model.

yt = �0 + �1x1t + :::+ �kxkt + �ut�1 + "t

Our procedure would be as follows:

(a) Do the regression of the original equation and get estimate ût

ût = yt � �̂0 � �̂1x1t � :::� �̂kxkt

(b) Do the combined regression

yt = �0 + �1x1t + :::+ �kxkt + �ût�1 + "t

(c) Compute (T � 1)R2 from the combined equation. Reject null if

(T � 1)R2 > �21 (�)
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9 Discrete and Limited dependent variable

Dummy is forn categorial and nominal explanatory variable. Now, we want to study

how to model the case when the limitation or restriction is on the explained variable. The

discrete means that the value of explained variable could only assume few possible values

such as number of children and limited means that the value of the explained varible

could lie on within some range numbers such as probability.

9.1 Problem of using linear model

1. out of the acceptable range estimation

2. heteroskedasticity

3. ine¢ cient estimate

4. non-normality of errors

5. problematic explanation of R2

9.2 Probit and logit model

Since linear model would have so many problems, we have to drop this simpli�cation.

Remember why we do regression? Yes, we would to estimate the functional form f such

that y = f (x1; x2; :::; xk) : In the previous chapters, we use the most basic linear form.

However, linear form places no restriction on the range of the function. (range = set of

all possible value of y).

If we put the restriction on the linear function, it is no longer linear. Hence we have no

choice but to adopt other functional forms which would allow the restriction on possible

value of y: For example if y is probability which could only assume value from zero to

one, we then restrict the family of functions to be set of functions which maps number to

[0; 1] interval. In particular, the most readily used functional form we have learnt is the

probability function.

If the probability function used is normal distribution function, it is called probit

model.

If the probability function used is logistic distribution function, it is called logit model.
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9.3 Least square Estimation

In linear regression model, our estimation method is ordinary least square (OLS) or

weighted least square (WLS). Least square(LS) estimation method is actually an uncon-

strained minimization.

min
�0;::�k

TX
t=1

[yt � f (x1t; x2t; :::; xkt)]
2

However, as I have said above, when the explanatory variable can only assume discrete

or limited values, the unconstrained optimization would give us undesirable outcome.

Therefore, if we continue to use least square estimate, we have to do the minimization

under constrains like 0 � f (x1; x2; :::; xk) � 1 in probability estimation. That is we are
going to do:

min
�0;::�k

TX
t=1

[yt � f (x1t; x2t; :::; xkt)]
2

s.t 0 � f (x1; x2; :::; xk) � 1

Remember f (x1; x2; :::; xk) is not longer linear and then we would not have this

f (x1; x2; :::; xk) = �0 + �1x1 + :::+ �kxk

and we might have functional form like this (remember this is uniform distribution?)

f (x1; x2; :::; xk) =
1

�0 + �1x1 + :::+ �kxk
:

or even more complicated functions such as (remmeber this is normal distribution?)

f (x1; x2; :::; xk) =
1p
2��

exp

"
�(�0 + �1x1 + :::+ �kxk)

2

2�2

#

The problem of using di¤erentiation with such complicated function to obtain a

close form solution would lead us into the regime of numerical optimization. (remember

HKCEE bisection method?)
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9.4 Maximium Likelihood Estimate

Although LS would still provide us a resonable estimation, it is usually not a good

way to deal with probability function estimation. A much better way to do this kind of

estimation is maximum likelihood estimate (MLE).

The principle of MLE is just opposite what we do to calculate the probability given

parameter of probability density function. We are going to estimate the parameter based

on "probability". Now, given the data, we already know which outcome is true. In the

other words, if we travel back through time machine, we actually know which event has

actually happened. Then we could maximize the parameter of the density function so

that the probability function would give the greatest "probability" to the event realized.

Under the classical de�nition of probability, outcome of event which has realized does

not �t into the criteria of random experiment. Hence, we could not call "probability"

but to change to new term "likelihood" L, which we try to maximize.

9.5 Truncated Data

When we do sampling, it is quite often that some group of population could not be

reached or observed easily. For example, it might be di¢ cult to observed pro�t of triad

from Inland revenue department data.

Particularly, if variable below certain valueis unobserved, data is called lower-truncated

or truncation from below. On the other hand, if the variable above certain is unobserved,

data is called upper-truncated or truncation from above.

If we know that certain data has su¤er from truncation problem, we have to change

the likelihood function by using conditional probability density function instead of un-

conditional one.

9.6 Censored Data

Besides truncation, another common data problem is censoring. It means that we

know the value is greater than or smaller than some values but we do not know its exact

value. In the other words, we observe the inequality rather than equality. For example,

if we observe the wage of unemployed, we would �nd his wage would be zero. However,

if there is no welfare system, he would still work for living. This means his market wage

is below the welfare payment and strictly larger than zero but we could only observe

zero. This means wages below welfare payment would be censored from the data. As the
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censoring point is from below, we call this censor from below. If the point is from above,

then we calll censor from above.

Of course, similar to the truncated case, the likelihood functions would change if we

know the data has been censored. However, we do not need conditional probability but

we only need to put more likelihood (probability) on the censored point since it has

represented a range of value below it.
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10 Simultaneous equations

10.1 Interaction between explained and explanatory variable

Very often, the explaned variable is not completely independent of explanatory vari-

ables. For example, in simple demand-supply framework, price and quantity can a¤ect

each other. It would be violate our assumptions of independence of xt (Cov (xt; ut) = 0)

if we are to estimate the following regression equation following the usual OLS procedure.

pt = �0 + �1qt + ut

One of the obvious problem is that the above regressio equation ignore the e¤ect of price

on the quantity. That is we assume �0 = �1 = 0 in the following equation.

qt = �0 + �1qt + vt:

Therefore, generally, if we want to estimate variables which would simultaneously

a¤ect value of each other, we need to estimate the both equations at the same time.

For example, if we know that y would a¤ect x and vice versa, we need to estimate the

following system of simultaneous equations at one time:(
yt = �0 + �1xt + ut

xt = �0 + �1yt + vt

10.2 Structural Form v.s. Reduced Form

How can we estimate two equations at the same time? Remember how we solve

simultaneous equations in alegbra course in secondary school? Yes, we use substitution

method which we try to eliminate one variable by plugging in equations. Then, why not

we repeat the same procedure to eliminate the simultaneous equation to single equation?

Putting second equation xt = �0+�1yt+vt into the �rst equation yt = �0+�1xt+ut;

we have

yt = �0 + �1 (�0 + �1xt + vt) + ut

which can be further written as

yt = (�0 + �1�0) + �1xt + (vt + ut) :
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Then, we can handle this by our ordinary least squeare estimation method.

However, we should have known that the substitution can be done in another way.

We now put �rst equation yt = �0+�1xt+ut into the second equation xt = �0+�1yt+vt;

we have

xt = �0 + �1 (�0 + �1yt + ut) + vt

and, after rearranging of terms,

xt = (�0 + �1�0) + �1yt + (ut + vt) :

Again, we use our regression technique to recover the above coe¢ cients.

To sum up, we can estiamte the following equations separately,(
yt = (�0 + �1�0) + �1xt + (vt + ut)

xt = (�0 + �1�0) + �1yt + (ut + vt)

using the least square method.

We would call the original equations in structural form since it shows the structure of

relationship between variables while the new equations in reduced form since it combines

all equations

10.3 Indirect least-squares method

Remember our target? We can going to estimate structural form equations(
yt = �0 + �1xt + ut

xt = �0 + �1yt + vt

but our method above is going to estimate reduced form equations(
yt = (�0 + �1�0) + �1xt + (vt + ut)

xt = (�0 + �1�0) + �1yt + (ut + vt)

This estimation method called indirect least-squares method (ILS) as we do not using

least square method to estimate the coe¢ cient directly. OLS calculations would not tell

us the value of each coe¢ cients, instead we could only have the following(
yt = 
0 + 
1xt + �t

xt = �0 + �1yt + !t
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Then we have 8>>>><>>>>:

0 = �0 + �1�0


1 = �1

�0 = �0 + �1�0

�1 = �1

which we could recover the value of �1 and �1 but not �0 nor �0: Hence, ILS might

not able to recover all you want. This kind of problem is called identi�cation problem

which refers to our inability to recover all coe¢ cients in structural form.

10.4 Identi�cation

How to identi�y all co¢ cients? It seems like our information is not enough as the

number of unknowns exceeds number of equations. What information does we need?

More variables. In particular, we need variables speci�c in each equation. Remember

our problem is intercepts of structural form equations could not be recovered. If we have

speci�c variables, we then can trace back the intercepts as they remain unchanged even

when speci�c variables vary.

Now, we know that ILS might su¤er from identi�cation problem depending on the ex-

istence of speci�c variables, which is actually the result of more unknowns than equations.

In theory, it is possible that number of equations may equal or more than unknowns. So,

we have the following identi�cation condition:

1. Exact-identi�cation

All parameters can be found and solution is unique.

2. Under-identi�cation

Not all parameter can be found.

3. Over-identi�cation

All parameters can be found but solution is not unique.

10.5 Order condition v.s. Rank condition

There are two methods to determine the system is exact-identi�ed,under-identi�ed or

over-identi�ed, though the underlying principle is the similar.
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1. Order condition

Remember our identi�cation would require speci�c variables? Hence, the condition

for an equation to be fully identi�ed would require that it cannot have all variables

and must have some variables omitted so that other equations would have speci�c

variables. So, the necessary (not su¢ cient) condition is

K � G� 1

where K is the number of excluded variables and G is number of equations.

2. Rank condition

Although this condition is much more complicated, it still worth studying it as it

is necessary and su¢ cient condition for identi�cation.

For matrix A; Rank(A) is the number of of independent rows or number of inde-

pendent columns. In fact, they are always the same. To check the identi�cation

condition, we need to �rst write the system in matrix form. That is, if the structural

form is 8><>:
xt = �0 + �1yt + �2at + vt

yt = �0 + �1xt + �2at + �3bt + ut

zt = 
0 + 
1yt + 
2bt + 
3ct + !t

The matrix form would then be0B@ 1 ��1 0

��1 1 0

0 �
1 1

1CA
0B@xtyt
zt

1CA =

0B@�2 0 0

�2 �3 0

0 
2 
3

1CA
0B@atbt
ct

1CA+
0B@vtut
!t

1CA
We have to check rank of the combined co¢ cients matrix:0B@ 1 ��1 0 �2 0 0

��1 1 0 �2 �3 0

0 �
1 1 0 
2 
3

1CA
To check whether the �rst equation if identi�ed or not, we need to:
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(a) look at the �rst row and locate the columns of zero.�
1 ��1 0 �2 0 0

�
which has zero at 3rd, 5th and 6th columns

(b) take out those columns 0B@0 0 0

0 �3 0

1 
2 
3

1CA
(c) remove the �rst row  

0 �3 0

1 
2 
3

!

(d) calculate the rank, which is equal to 2 in the above case.

(e) If rank = G� 1; then the equation is identi�ed, otherwise not.
In the above case, G� 1 = 3� 1 = 2 and so it is identi�ed.

Now, if you want to check second or third equation, just follow the same procedure

but change the target row in step a and step c.

10.6 Two-stage least-squares estimation

What can we do if the system is under-identi�ed or over-identi�ed? Fortunately (or

might be unfortunate for you), we have another way to do estimation besides ILS.

Remember our violation of OLS is Cov (xt; ut) = 0: So, we could still use OLS if we

substitute xt by another proxy variables. In two-stage least-squares estimation, we use

the reduced form predicted x̂t to replace xt: Then we perform OLS on the structural

equations directly.

Formally, if we wish to estimate this system(
yt = �0 + �1xt + ut

xt = �0 + �1yt + vt

we could �rst estimate this reduced equation

xt = �0 + �1yt + !t
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where �0 = �0 + �1�0; �1 = �1 and !t = ut + vt:

Then, we could obtain x̂t by

x̂t = �̂0 + �̂1yt + !t

Since we know our estimation of coe¢ cients would have not changed if order of vari-

ables are reversed (as long as those assumptions are still satis�ed), we can estimate this

system (
yt = �0 + �1xt + ut

yt = ��0
�1
+ 1

�1
xt + !t

and do the OLS estimation by replacing xt by x̂t:(
yt = �0 + �1x̂t + ut

yt = ��0
�1
+ 1

�1
x̂t + !t

Then we could recover all coe¢ cients �0; �1; �0 and �1:

Congratulation!

You have reached the last page!

Thank you for watching!

Lazy Production @ 2006
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