SQL Notes

1.
Introduction

What is SQL?

*
SQL stands for Structured Query Language.

*
When a user wants to get some information from a database file, he can issue a query. A query is a user–request to retrieve data or information with a certain condition. And SQL is a query language that allows user to specify the conditions. In this way, the user need not know the algorithms of the searching processing.

*
Most database management systems (DBMS) support SQL.

Concept of SQL

*
In an SQL command, the user specifies a certain condition (requirement) and a database file. Then the program will go through all the records in the database file and select those records that satisfy the condition. This processing is called searching. (see eg.2)

*
The user can also ask about the statistical information of the data, e.g. the maximum, the minimum, the sum and the average.

*
The result of the query will then be stored in form of a table. The user can ask the program to store the result in database file format, or to store in a temporary table.

How to involve SQL in FoxPro

*
Before using SQL, the tables should be opened.
*
The SQL command can be entered directly in the Command Window, or can be issued by using Dialog box.

*
If we want SQL to perform exact matching, we should SET ANSI ON.
2.
Basic Structure of an SQL Query

	General Structure
	SELECT, ALL / DISTINCT, *,

AS, FROM, WHERE

	Comparison
	IN, BETWEEN, LIKE "% _"

	Grouping
	GROUP BY, HAVING,

COUNT(), SUM(), AVG(), MAX(), MIN()

	Display Order
	ORDER BY, ASC / DESC

	Logical Operators
	AND, OR, NOT

	Output
	INTO TABLE / CURSOR

TO FILE [ADDITIVE], TO PRINTER, TO SCREEN

	Union
	UNION

Abbreviation:

expr
=
expression,
groupexpr
=
group expression

col
=
column,
comcol
=
common column

colname
=
column name

nullval
=
null value

The Situation: Student Particulars

Example:
Consider the following database file student.dbf:

(i) The house code hcode refers to the House of the student.

R = Red,
 Y = Yellow,
B = Blue,
G = Green

(ii) The district code dcode refers to the short form of the district.

eg. TST = Tsim Sha Tsui,

SSP = Shum Shui Po

(iii) remission tells whether the student is receiving fee remission (學費減免):

.T. = receive remission,

.F. = no remission

(iv) The Math test mtest stores the test result of the student. The full mark is 100.

field
type
width
contents

id
numeric
4
student id number

name
character
10
name

dob
date
8
date of birth

sex
character
1
sex: M / F

class
character
2
class

hcode
character
1
house code: R, Y, B, G

dcode
character
3
district code

remission
logical
1
fee remission

mtest
numeric
2
Math test score
I
General Structure

SELECT FROM WHERE

SELECT [ALL / DISTINCT] expr1 [AS col1], expr2 [AS col2] ;

FROM tablename WHERE condition
–
The query will select rows from the source tablename and output the result in table form.

–
Expressions expr1, expr2 can be (1) a column, or (2) an expression of functions and fields.

–
And col1, col2 are their corresponding column names in the output table.

–
DISTINCT will eliminate duplication in the output while ALL will keep all duplicated rows.

–
condition can be (1) an inequality, or (2) a string comparison, and using logical operators AND, OR, NOT.

Before using SQL, open the file:

USE student

eg.1
List all the student records.

SELECT * FROM student

Note:
1)
This command asks the program to list out all the records without any restriction, so the WHERE clause is omitted.

2)
In the SELECT clause, * is used to select all columns in the source table.
3)
The result is organized in table form, and stored as a temporary table.

	id
	name
	dob
	sex
	class
	mtest
	hcode
	dcode
	remission

	9801
	Peter
	06/04/86
	M
	1A
	70
	R
	SSP
	.F.

	9802
	Mary
	01/10/86
	F
	1A
	92
	Y
	HHM
	.F.

	9803
	Johnny
	03/16/86
	M
	1A
	91
	G
	SSP
	.T.

	9804
	Wendy
	07/09/86
	F
	1B
	84
	B
	YMT
	.F.

	9805
	Tobe
	10/17/86
	M
	1B
	88
	R
	YMT
	.F.

	:
	:
	:
	:
	:
	:
	:
	:
	:

eg.2
List the names and house code of 1A students.

SELECT name, hcode, class FROM student ;

WHERE class="1A"
Note:

Here we want only 1A students, so we set a condition class="1A". In this way, the program will go through the records in the table and select only those records satisfying the condition. Then the program will display the selected records in a temporary table. Since we want only 3 fields: name, hcode and class, the result table will omit other fields.

	name
	hcode
	class

	Peter
	R
	1A

	Mary
	Y
	1A

	Johnny
	G
	1A

	Luke
	G
	1A

	Bobby
	B
	1A

	Aaron
	R
	1A

	:
	:
	:

eg.3
List the residential district of the Red House members.

SELECT DISTINCT dcode FROM student ;

WHERE hcode="R"
Note:

If two or more students live in the same district, we can use the option DISTINCT to tell the program to display the district code only once.

	dcode

	HHM

	KWC

	MKK

	SSP

	TST

	YMT

eg.4
List the names and ages (1 d.p.) of 1B girls.

SELECT name, ROUND((DATE()-dob)/365,1) AS age FROM student ;

WHERE class="1B" AND sex="F"
Note:
1)
Here we do not have a field age, so we have to use the date of birth dob to form an expression to calculate the age of each student. We use the option AS age to specify the column name in the result table.

2)
We want 1B girls, that mean we want the records satisfying two conditions at the same time, so we use the logical operator AND.

	name
	age

	Wendy
	12.1

	Kitty
	11.5

	Janet
	12.4

	Sandy
	12.3

	Mimi
	12.2

eg.5
List the names, id of 1A students with no fee remission.

SELECT name, id, class FROM student ;

WHERE class="1A" AND NOT remission

Note:
1)
Here we have two conditions: he must be 1A student, and he does not receive fee remission. So in the WHERE clause we use the AND operator.

2)
Since remission is a logical field, it can be used directly in the logical expression. And we use the operator NOT to express the negation.

	name
	id
	class

	Peter
	9801
	1A

	Mary
	9802
	1A

	Luke
	9810
	1A

	Bobby
	9811
	1A

	Aaron
	9812
	1A

	Ron
	9813
	1A

	Gigi
	9824
	1A

	:
	:
	:

II
Comparison

expr IN (value1, value2, value3)

expr BETWEEN value1 AND value2

expr LIKE "%_"

–
In the WHERE clause, we can use the above SQL comparison:

1)
expr IN (value1, value2, value3) will become true when expr carries the value the same as one of value1, value2, value3. expr can be a string or a number.

2)
expr BETWEEN value1 AND value2 will become true when expr is a number that lies between value1 and value2.

3)
expr LIKE "%_" is used for string matching. In the pattern, we use % to denote any sequence of characters, and _ to denote any 1 character.

eg.6
List the students who were born on Wednesday or Saturdays.

SELECT name, class, CDOW(dob) AS bdate FROM student ;

WHERE DOW(dob) IN (4,7)
Note:

If the student's dob is Wed or Sat, then the expression DOW(dob) will return 4 or 7. So IN (4,7) is checking the value.

	name
	class
	bdate

	Peter
	1A
	Wednesday

	Wendy
	1B
	Wednesday

	Kevin
	1C
	Saturday

	Luke
	1A
	Wednesday

	Aaron
	1A
	Saturday

	:
	:
	:

eg.7
List the students who were not born in January, March, June, September.

SELECT name, class, dob FROM student ;

WHERE MONTH(dob) NOT IN (1,3,6,9)

Note:

Here we do not want students with MONTH(dob) = 1, 3 6 or 9. So we can use NOT IN (1,3,6,9) to check the value.

	name
	class
	dob

	Wendy
	1B
	07/09/86

	Tobe
	1B
	10/17/86

	Eric
	1C
	05/05/87

	Patty
	1C
	08/13/87

	Kevin
	1C
	11/21/87

	Bobby
	1A
	02/16/86

	Aaron
	1A
	08/02/86

	:
	:
	:

eg.8
List the 1A students whose Math test score is between 80 and 90 (incl.)

SELECT name, mtest FROM student ;

WHERE class="1A" AND mtest BETWEEN 80 AND 90

Note:
1)
Here we have two conditions, the first one is class="1A", and the second condition is the test score lies between 80 and 90. The two conditions must be true at the same time, so we use AND.

2)
The Math test score mtest is a number that should lie between 80 and 90. So the expression is mtest BETWEEN 80 AND 90, including 80 and 90.

	name
	mtest

	Luke
	86

	Aaron
	83

	Gigi
	84

eg.9
List the students whose names start with "T".

SELECT name, class FROM student ;

WHERE name LIKE "T%"

Note:

Here we use string matching. The pattern "T%" refers to the string with the first character is "T", and the rest of the string can be any sequence of characters.

	name
	class

	Tobe
	1B

	Teddy
	1B

	Tim
	2A

eg.10
List the Red house members whose names contain "a" as the 2nd letter.

SELECT name, class, hcode FROM student ;

WHERE name LIKE "_a%" AND hcode="R"

Note:

Here we use the pattern "_a%". The _ sign means that the first character can be any character, and then the second character must be "a", while the rest can be any sequence of characters.

	name
	class
	hcode

	Aaron
	1A
	R

	Janet
	1B
	R

	Paula
	2A
	R

III
Grouping

SELECT FROM WHERE condition ;

GROUP BY groupexpr [HAVING requirement]

Group functions: COUNT(), SUM(), AVG(), MAX(), MIN()

–
groupexpr specifies the related rows to be grouped as one entry in the output. Usually it is a column in the source table.

–
WHERE condition specifies the condition of individual rows before the rows are grouped. HAVING requirement specifies the condition involving the whole group.

–
Group functions can evaluate the group statistics:

COUNT():
count the number of records

SUM():
find the sum

AVG():
find the average

MAX():
find the maximum

MIN():
find the minimum

eg.11
List the number of students of each class.

SELECT class, COUNT(*) FROM student

GROUP BY class

Note:
1)
With the option GROUP BY class, the program will first arrange the records in the order of class.

2)
Then the records with the same class will be grouped together.

3)
The group function COUNT(*) will return the number of records of each group.

	class
	cnt

	1A
	10

	1B
	9

	1C
	9

	2A
	8

	2B
	8

	2C
	6

eg.12
List the average Math test score of each class.

SELECT class, AVG(mtest) FROM student GROUP BY class

Note:

The program will first arrange the records in the order of class, and then in each group calculate the average mtest value. So each group will have its own average value.

	class
	avg_mtest

	1A
	85.90

	1B
	70.33

	1C
	37.89

	2A
	89.38

	2B
	53.13

	2C
	32.67

eg.13
List the number of girls of each district.

SELECT dcode, COUNT(*) FROM student ;

WHERE sex="F" GROUP BY dcode

Note:

Here we have a condition in the sex="F". The program will first select the records that satisfy the condition, then it will group the selected records by the district code dcode.

	dcode
	cnt

	HHM
	6

	KWC
	1

	MKK
	1

	SSP
	5

	TST
	4

	YMT
	8

eg.14
List the max. and min. test score of Form 1 students of each district.

SELECT MAX(mtest), MIN(mtest), dcode FROM student ;

WHERE class LIKE "1_" GROUP BY dcode

	max_mtest
	min_mtest
	dcode

	92
	36
	HHM

	91
	19
	MKK

	91
	31
	SSP

	92
	36
	TST

	75
	75
	TSW

	88
	38
	YMT

Note:

Here we use a condition class LIKE "1_" because we only want Form 1 students of each district.

eg.15
List the average Math test score of the boys in each class. The list should not contain class with less than 3 boys.

SELECT AVG(mtest), class FROM student ;

WHERE sex="M" GROUP BY class HAVING COUNT(*) >= 3

Note:

The program will first group the records by class and then evaluate the average mtest of each group. Then the program will check the group requirement COUNT(*) >= 3. And the groups not satisfying the group requirement will be omitted from the result table. (Here, class 2C.)

	avg_mtest
	class

	86.00
	1A

	77.75
	1B

	35.60
	1C

	86.50
	2A

	56.50
	2B

IV
Display Order

SELECT FROM WHERE GROUP BY ;

ORDER BY colname ASC / DESC

–
The option ORDER BY colname will control the display order in the result table, where colname is a column in the result table.

–
ASC = ascending, DESC = descending.

eg.16
List the boys of class 1A, order by their names.

SELECT name, id FROM student ;

WHERE sex="M" AND class="1A" ORDER BY name

	name
	id
	
	name
	id

	Peter
	9801
	
	Aaron
	9812

	Johnny
	9803
	
	Bobby
	9811

	Luke
	9810
	
	Johnny
	9803

	Bobby
	9811
	
	Luke
	9810

	Aaron
	9812
	
	Peter
	9801

	Ron
	9813
	
	Ron
	9813

eg.17
List the 2A students by their residential district.

SELECT name, id, class, dcode FROM student ;

WHERE class="2A" ORDER BY dcode

	name
	id
	class
	dcode

	Jimmy
	9712
	2A
	HHM

	Tim
	9713
	2A
	HHM

	Samual
	9714
	2A
	SHT

	Rosa
	9703
	2A
	SSP

	Helen
	9702
	2A
	TST

	Joseph
	9715
	2A
	TSW

	Paula
	9701
	2A
	YMT

	Susan
	9704
	2A
	YMT

eg.18
List the number of students of each district (in desc. order).

SELECT COUNT(*) AS cnt, dcode FROM student ;

GROUP BY dcode ORDER BY cnt DESC

	cnt
	docode

	11
	YMT

	10
	HHM

	10
	SSP

	9
	MKK

	5
	TST

	2
	TSW

	1
	KWC

	1
	MMK

	1
	SHT

eg.19
List the boys of each house order by the classes. (2-level ordering)

SELECT name, hcode, class FROM student ;

WHERE sex="M" ORDER BY hcode, class

Note:

The records are arranged by the house code hcode (first level), and within the same House, the records are arranged by the class.

	name
	hcode
	class

	Bobby
	B
	1A

	Teddy
	B
	1B

	Joseph
	B
	2A

	Zion
	B
	2B

	Leslie
	B
	2C

	Johnny
	G
	1A

	Luke
	G
	1A

	Kevin
	G
	1C

	George
	G
	1C

	 :
	 :
	 :

	 :
	 :
	 :

V
Output

	INTO TABLE tablename

	the output table is saved as a database file in the disk.

	INTO CURSOR temp

	the output is stored in the working memory temporarily.

	TO FILE filename [ADDITIVE]

	output to a text file.

(additive = append)

	TO PRINTER
	send to printer.

	TO SCREEN
	display on screen.

eg.20
List the students in desc. order of their names and save the result as a database file name.dbf.

SELECT * FROM student ;

ORDER BY name DESC INTO TABLE name.dbf

Note:
1)
The option INTO TABLE name.dbf will ask the program to save the result table as a database file in the disk.
2) This command is equivalent to sorting. The file student.dbf is sorted by name in descending order and the result is stored in a new file name.dbf.

3)
The structure of the result table is the same as the original table.

	id
	name
	dob
	sex
	class
	mtest
	hcode
	dcode
	remission

	9707
	Zion
	07/29/85
	M
	2B
	51
	B
	MKK
	.F.

	9709
	Yvonne
	08/24/85
	F
	2C
	10
	R
	TST
	.F.

	9804
	Wendy
	07/09/86
	F
	1B
	84
	B
	YMT
	.F.

	9819
	Vincent
	03/15/85
	M
	1C
	29
	Y
	MKK
	.F.

	9805
	Tobe
	10/17/86
	M
	1B
	88
	R
	YMT
	.F.

	9713
	Tim
	06/19/85
	M
	2A
	91
	R
	HHM
	.T.

	9816
	Teddy
	01/30/86
	M
	1B
	64
	B
	SSP
	.F.

	:
	:
	:
	:
	:
	:
	:
	:
	:

eg.21
Print the Red House members by their classes, sex and name.

SELECT class, name, sex FROM student ;

WHERE hcode="R" ;

ORDER BY class, sex DESC, name TO PRINTER

Note:
1)
The command asks the program to make a name list of Red House. And we want the list in the order of class, sex and name.

2)
The program will first generate the result table in the working memory, and then send the data in the result table to the printer to produce a hardcopy.

	class
	name
	sex

	1A
	Aaron
	M

	1A
	Peter
	M

	1A
	Ron
	M

	1B
	Tobe
	M

	1B
	Janet
	F

	1B
	Kitty
	F

	1B
	Mimi
	F

	:
	:
	:

3.
Union, Intersection and Difference of Tables

Consider two tables of the same structure: tables A and B.

	The union of A and B
(A

B)
	A table containing all the rows from A and B.

	The intersection of A and B
(A

B)
	A table containing only rows that appear in both A and B.

	The difference of A and B
(A–B)
	A table containing rows that appear in A but not in B.

SELECT FROM WHERE ;

UNION ;

SELECT FROM WHERE

SELECT FROM table1 ;

WHERE col IN (SELECT col FROM table2)

SELECT FROM table1 ;

WHERE col NOT IN (SELECT col FROM table2)

The Situation: Bridge Club & Chess Club

Example:
Consider the members of the Bridge Club and the Chess Club. The two database files bridge.dbf and chess.dbf have the same structure:

field
type
width
contents

id
numeric
4
student id number

name
character
10
name

sex
character
1
sex: M / F

class
character
2
class

	
	Bridge [A]
	
	
	
	
	Chess [B]
	
	

	
	id
	name
	sex
	class
	
	
	id
	name
	sex
	class

	1
	9812
	Aaron
	M
	1A
	
	1
	9802
	Mary
	F
	1A

	2
	9801
	Peter
	M
	1A
	
	2
	9801
	Peter
	M
	1A

	3
	9814
	Kenny
	M
	1B
	
	3
	9815
	Eddy
	M
	1B

	4
	9806
	Kitty
	F
	1B
	
	4
	9814
	Kenny
	M
	1B

	5
	9818
	Edmond
	M
	1C
	
	5
	9817
	George
	M
	1C

	
	:
	:
	:
	:
	
	
	:
	:
	:
	:

Before using SQL, open the two tables:

SELECT A

USE bridge

SELECT B

USE chess

eg.22
The two clubs want to hold a joint party. Make a list of all students. (Union)

SELECT * FROM bridge ;

UNION ;

SELECT * FROM chess ;

ORDER BY class, name INTO TABLE party

Note:

The table party should contain the members of the Bridge Club as well as the members of the Chess Club, so it is a union of the two clubs.

	
	Party
	
	

	
	id
	name
	sex
	class

	1
	9812
	Aaron
	M
	1A

	2
	9802
	Mary
	F
	1A

	3
	9801
	Peter
	M
	1A

	4
	9815
	Eddy
	M
	1B

	5
	9814
	Kenny
	M
	1B

	6
	9806
	Kitty
	F
	1B

	7
	9818
	Edmond
	M
	1C

	8
	9817
	George
	M
	1C

	
	:
	:
	:
	:

eg.23
Print a list of students who are members of both clubs. (Intersection)

SELECT * FROM bridge ;

WHERE id IN (SELECT id FROM chess) ;

TO PRINTER

Note:

Here we want a list of common members. The program will select each of the members from the Bridge Club, and then check whether he is a member of the Chess Club or not. If so, then he is a common member.

	
	Common
	
	

	
	id
	name
	sex
	class

	1
	9801
	Peter
	M
	1A

	2
	9814
	Kenny
	M
	1B

	
	:
	:
	:
	:

eg.24
Make a list of students who are members of the Bridge Club but not Chess Club. (Difference)

SELECT * FROM bridge ;

WHERE id NOT IN (SELECT id FROM chess) ;

INTO TABLE diff

Note:
1)
Here we want to exclude the Chess members. The program will select each of the members from the Bridge Club, and then check whether he is a member of the Chess Club or not. If so, then the program will exclude him.

2)
The set difference is not symmetric, so when we want "members of Chess Club but not Bridge Club", we will get a different result.

	
	Diff
	
	

	
	Id
	name
	sex
	class

	1
	9812
	Aaron
	M
	1A

	2
	9806
	Kitty
	F
	1B

	3
	9818
	Edmond
	M
	1C

	
	:
	:
	:
	:

4.
Multiple Tables

SQL provides a convenient operation to retrieve information from multiple tables. This operation is called join. The join operation will combine the tables into one large table with all possible combinations (Math: Cartesian Product), and then it will filter the rows of this combined table to yield useful information.

Example: Consider the following two tables T1 and T2:

Natural Join

*
A Natural Join is a join operation that joins two tables by their common column. This operation is similar to the setting relation of two tables.

SELECT a.comcol, a.col1, b.col2, expr1, expr2 ;

FROM table1 a, table2 b ;

WHERE a.comcol = b.comcol
–
In Natural Join, the two tables are joined by a common column comcol.

–
a and b are the aliases of table1 and table2.
–
We should qualify the columns. We use a and b to refer to the source table of the column.

–
Expressions expr1, expr2 can involve columns from table1 and table2.
The Situation: Music Lesson

Example:
In the music lesson, each student should learn a musical instrument. Consider the student file student.dbf and the following file music.dbf:

field
type
width
contents

id
numeric
4
student id number

type
character
10
type of the music instrument

eg.25
Make a list of students and the instruments they learn. (Natural Join)

SELECT s.class, s.name, s.id, m.type FROM student s, music m ;

WHERE s.id=m.id ORDER BY class, name

Note:
1)
Here we use s to denote student.dbf and m to denote music.dbf.

2)
The join condition is s.id=m.id, that means we want records from s to join with records from m with the same id.

3)
In the result table, we can have columns from both tables, but we have to use the table alias to specify the source table.

	class
	name
	id
	type

	1A
	Aaron
	9812
	Piano

	1A
	Bobby
	9811
	Flute

	1A
	Gigi
	9824
	Recorder

	1A
	Jill
	9820
	Piano

	1A
	Johnny
	9803
	Violin

	1A
	Luke
	9810
	Piano

	1A
	Mary
	9802
	Flute

	:
	:
	:
	:

eg.26
Find the number of students learning piano in each class.

SELECT s.class, COUNT(*) FROM student s, music m ;

WHERE s.id=m.id AND m.type="Piano" ;

GROUP BY class ORDER BY class

Note:
1)
Here the program will first use the join condition s.id=m.id to join the two tables.

2)
Then from the product table, the program will select the records that satisfy the condition m.type="Piano".

3)
The program will then group the records by class, and count the number f records in each group, and finally it will arrange the result by class.

	class
	cnt

	1A
	4

	1B
	2

	1C
	1

Outer Join
*
An Outer Join is a join operation that includes rows that have a match, plus rows that do not have a match in the other table.

SELECT a.common, a.column1, b.column2, expr1, expr2 ;

FROM table1 a, table2 b ;

WHERE a.comcol = b.comcol ;

UNION ;

SELECT comcol, col1, nullval, nullval, nullval ;

FROM table1 ;

WHERE a.comcol NOT IN (SELECT comcol FROM table2)

–
The Outer Join consists of 2 SELECT statements, connected by UNION..
–
The first part is the successful join, the second part contains rows that do not have a match
–
In the second part, null value (null string "", zero, .F., { / / }) should be inserted to fill up the columns, so that the two parts have the same structure.
eg.27
List the students who have not yet chosen an instrument. (No match)

SELECT class, name, id FROM student ;

WHERE id NOT IN (SELECT id FROM music) ;

ORDER BY class, name
Note:
1)
Here the program will select the records from the file student.dbf that has no match in the other file music.dbf.

2)
(SELECT id FROM music) is a query that returns a table of id that have an entry in music.dbf. So the condition id NOT IN (...) will check for no match.

	class
	name
	id

	1A
	Mandy
	9821

	1B
	Kenny
	9814

	1B
	Tobe
	9805

	1C
	Edmond
	9818

	1C
	George
	9817

	:
	:
	:

eg.28
Make a checking list of students and the instruments they learn. The list should also contain the students without an instrument. (Outer Join)

SELECT s.class, s.name, s.id, m.type ;

FROM student s, music m ;

WHERE s.id=m.id ;

UNION ;

SELECT class, name, id, "" ;

FROM student ;

WHERE id NOT IN (SELECT id FROM music) ;

ORDER BY 1, 2
Note:
1)
The first SELECT command will produce a Natural Join by the id.

2)
The second SELECT command will produce a no-match table, which contains id that have no appearance in music.dbf.

3)
To make the two parts to be the same structure, we fill in appropriate null string ("") in the no-match table.

	class
	name
	id
	type

	1A
	Aaron
	9812
	Piano

	1A
	Bobby
	9811
	Flute

	1A
	Gigi
	9824
	Recorder

	1A
	Jill
	9820
	Piano

	1A
	Johnny
	9803
	Violin

	1A
	Luke
	9810
	Piano

	1A
	Mandy
	9821
	

	1A
	Mary
	9802
	Flute

	1A
	Peter
	9801
	Piano

	1A
	Ron
	9813
	Guitar

	1B
	Eddy
	9815
	Piano

	1B
	Janet
	9822
	Guitar

	1B
	Kenny
	9814
	

	1B
	Kitty
	9806
	Recorder

	:
	:
	:
	:

1A

Class

1A

Result

Result

Difference

Intersection

Union

A

B

A

B

A

B

A� EMBED Equation.2 ���B

A� EMBED Equation.2 ���B

A–B

1A

1B

1B

class="1A"

 :

 :

1B

1B

1A

1A

1A

Class

(

(

(

(

(

Result

Result

Result

Result

Result

Result

Result

Result

1C

1C

1C

1B

1B

1B

1B

1B

1B

1A

1A

1A

class

Student

Result

Result

Result

1C

COUNT()

1B

COUNT()

1A

Group By Class

COUNT()

Result

Result

dcode

ORDER BY

:

:

Green House

Order by hcode

Blue House

Order by class

Result

Result

Result

Result

Result

Result

PRINTER

name.dbf

Hardcopy

Result

Result

Result

Join

type

class

name

id

Product

9801

class

name

id

9801

Student

type

9801

id

Music

Same id

Result

A

A

A

3

2

1

B

Outer Join

No Match

Natural Join

A

field2

field1

field2

field1

Result

class

empty

Result

Result

class

Group By

m.type= "Piano"

Condition

Join

Product

Student

Music

3

2

1

3

2

1

B

B

B

Page 8

_964682453.unknown

_964682514.unknown

_962198611.unknown

_962198614.unknown

