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Special Plane Curves
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1. Equation in polar coordinates: r2 = a2cos 2(.

2. Equation in rectangular coordinates: 
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3. Angle between AB' or A'B and x-axis = 45(.
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Area of one loop =
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Cycloid

1. Equations in parametric form: 
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2. Area of one arch = 3(a2.

3. Arc length of one arch = 8a.
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This is a curve described by a point P on a circle of radius a rolling along x-axis.
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Hypocycloid with Four Cusps

1. Equation in rectangular coordinates: 
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2. Equations in parametric form: 
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3. Area bounded by curve =
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4. Arc length of entire curve = 6a.
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This is a curve described by a point P on a circle of radius 
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 as it rolls on the inside of a circle of radius a.

D. [image: image37.png]


Cardioid

1. Equation: 
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2. Area bounded by curve =
[image: image9.wmf]2

2

3

a

p

.

3. Arc length of curve = 8a.
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This is the curve described by a point P on a circle of radius 
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 as it rolls on the outside of a fixed circle of radius 
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Catenary

1. Equation: 
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This is the curve in which a heavy uniform chain would hang if suspended vertically from fixed points A and B.

F. [image: image41.png]


Three Leafed Rose

1. Equation: r = acos 3(.

The equation 
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 is a similar curve obtained by rotating the curve of Figure 6 counterclockwise through 30( or 
[image: image14.wmf]6

p

 radians.

In general r = acos n( or r = asin n( has n leaves if n is odd.
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G. [image: image43.png]


Four Leafed Rose

1. Equation: r = acos 2(.

The equation 
[image: image15.wmf]q
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 is a similar curve obtained by rotating the curve of Figure 7 counterclockwise through 45( or 
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 radians.

In general r = acos n( or r = asin n( has 2n leaves if n is even.
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H. Epicycloid

1. [image: image45.png]


Parametric equations: 
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This is the curve described by a point P on a circle of radius b as it rolls on the outside of a circle of radius a.

The cardioid (Figrue 4) is a special case of an epicycloid.
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I. General Hypocycloid

1. [image: image47.png]


Parametric equations: 
[image: image18.wmf](
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This is the curve described by a point P on a circle of radius b as it rolls on the inside of a circle of radius a.
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If b =
[image: image19.wmf]4

a

, the curve is that of Figure 3.

J. Trochoid

1. Parametric equations: 
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This is the curve described by a point P at a distance b from the centre of a circle of radius a as the circle rolls on the x-axis.

If b < a, the curve is as shown in Figure 10(a) and is called a curtate cycloid.

If b > a, the curve is as shown in Figure 10(b) and is called a prolate cycloid.

If b = a, the curve is the cycloid of Figure 2.
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K. Tractrix

1. Parametric equations: 
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This is the curve described by endpoint P of a taut string PQ of length a as the other end Q is moved along the x-axis.

L. Witch of Agnes

1. Equation in rectangular coordinates: 
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2. Parametric equations: 
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In Figure 12 the variable line OA intersects y = 2a and the circle of radius a with centre (0, a) at A and B respectively.  Any point P on the “witch” is located by constructing lines parallel to the x and y-axes through B and A respectively and determining the point P of intersection.

M. Folium of Descartes

1. Equation in rectangular coordinates: x3 + y3 = 3axy.

2. Parametric equations: 
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3. Area of loop =
[image: image25.wmf]2

2

3

a

.

4. Equation of asymptote: x + y + a = 0.

N. Involute of a Circle

1. Parametric equations: 
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This is the curve described by the endpoint P of a string as it unwinds from a circle of radius a while held taut.


O. Evolute of an Ellipse

1. Equation in rectangular coordinates: 
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2. Parametric equations: 
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This curve is the envelope of the normals to the ellipse 
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= 1 shown dashed in Figure 15.

P. Ovals of Cassini

1. Polar equation: r4 + a4 – 2a2r2cos 2( = b4.

This is the curve described by a point P such that the product of its distances from two fixed points (distance 2a apart) is a constant b2.

The curve is as in Figure 16(a) or Figure 16(b) according as b < a or b > a respectively.

If b = a, the curve is a lemniscate (figure 1).



Q. Limacon of Pascal

1. Polar equation: r = b + acos(.

Let OQ be a line joining origin O to any point Q on a circle of diameter a passing through O.  Then the curve is the locus of all points P such that PQ = b.  The curve is as in Figure 17(a) or Figure 17(b) according as b > a or b < a respectively.  If b = a, the curve is a cardioid (figure 4).



R. Cissoid of Diocles

1. Equation in rectangular coordinates: 
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2. Parametric equations: 
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This is the curve described by a point P such that the distance OP = distance RS.  It is used in the problem of duplication of a cube, i.e. finding the side of a cube which has twice the volume of a given cube.

S. Spiral of Archimedes

1. Polar equation: r = a(.
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Figure 16(a)
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