Helen Liang Memorial Secondary School (Shatin) Mock Hong Kong Advanced Level Examination 1999/2000

PURE MATHEMATICS PAPER II

Max. Marks: 100

Date: 1-3-2000 Time allowed: 3 hours (1:00 to 4:00 p.m.)

Secondary 7S Name: _____ Class No.: ____

1. This paper consists of Section A and Section B.

2. Answer ALL questions in Section A.

3. Answer any FOUR questions in Section B.

FORMULAS FOR REFERENCE

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$2\sin A \cos B = \sin(A + B) + \sin(A - B)$$

$$2\cos A \cos B = \cos(A + B) + \cos(A - B)$$

$$2\sin A \sin B = \cos(A - B) - \cos(A + B)$$

$$\sin A + \sin B = 2\sin \frac{A + B}{2}\cos \frac{A - B}{2}$$

$$\sin A - \sin B = 2\cos \frac{A + B}{2}\sin \frac{A - B}{2}$$

$$\cos A + \cos B = 2\cos \frac{A + B}{2}\cos \frac{A - B}{2}$$

$$\cos A - \cos B = -2\sin \frac{A + B}{2}\sin \frac{A - B}{2}$$

SECTION A (40 marks)

Answer ALL questions in this section.

1. Suppose that the function f satisfies

$$f(\alpha + \beta) = f(\alpha) + f(\beta)$$

for all $\alpha, \beta \in \mathbf{R}$ and f is continuous at 0. Prove that f is continuous at x for all $x \in \mathbf{R}$. (5 marks)

- 2. Prove that the equation $x^7 + x^5 + x^3 + 1 = 0$ has exactly one real root. (4) marks)
- 3. Consider the lines

$$L_1: \frac{x+2}{-1} = \frac{y-2}{2} = \frac{z}{2}$$

$$L_2: x+3 = 0 = 3y + 2z - 18$$

- (a) Prove that L_1 and L_2 are non-coplanar. (3 marks)
- (b) S is a sphere with centre at C(3,-1,4) and touching the line L_1 .
 - (i) Find the radius of the sphere.
 - (ii) Hence deduce that for any point P(x, y, z) on S,

$$(x-3)^2 + (y+1)^2 + (z-4)^2 = 49.$$

(4 marks)

4. Figure 1 shows the graph of $r = a \sin^3 \frac{\theta}{3}$, (a > 0). Find the area of the shaded region. (6 marks)

FIGURE 1

- 5. (a) Evaluate $\int_0^1 e^{\sqrt{x}} dx$. (b) Evaluate $\int_0^\infty e^{-x} \sin x dx$. (6 marks)
- 6. Let $f(x) = \frac{1}{\sqrt{1+x^2}}$ for all $x \in \mathbf{R}$. Let $f^{(n)}$ denote the n-th derivative of f for $n = 1, 2, \dots, \text{ and } f^{(0)} = f.$
 - (a) Prove that $(1 + x^2)f'(x) + xf(x) = 0$. (2 marks)
 - (b) Hence, or otherwise, evaluate $f^{(2n-1)}(0)$, $n = 1, 2, \ldots$ (5 marks)

7. Evaluate

$$\lim_{n\to\infty} \left(\frac{1}{\sqrt{n^2}} + \frac{1}{\sqrt{n(n+1)}} + \dots + \frac{1}{\sqrt{n(2n-1)}} \right).$$

(5 marks)

SECTION B (60 marks)

Answer any FOUR questions from this section. Each question carries 15 marks.

8. Define

$$f(x) = \frac{1}{x(x+1)^2}.$$

- (a) Write down the domain of f. (2 mark)
- (b) Determine all x such that
 - (i) f'(x) > 0
 - (ii) f'(x) < 0
 - (iii) f''(x) > 0
 - (iv) f''(x) < 0 (5 marks)
- (c) Find all the relative maxima, relative minima, and inflexion points of f(x). (2 marks)
- (d) Find all the vertical asymptote(s) and horizontal asymptote(s) of f(x), if any. (3 marks)
- (e) Sketch the graph of y = f(x). (3 marks)
- 9. (a) Prove that the equation $x = 2 + \ln x$ has two unequal positive real roots. (5 marks)
 - (b) The sequence $\{x_n\}$ is defined by

$$x_{n+1} = 2 + \ln x_n,$$

where $n = 1, 2, 3, \ldots$, and $a < x_1 < b$ where a, b are the roots of the equation $x = 2 + \ln x$. By mathematical induction, or otherwise, prove that

- (i) $\{x_n\}$ is an increasing sequence.
- (ii) $\{x_n\}$ is bounded above by b.

(7 marks)

- (c) Show that $\lim_{n\to\infty} x_n = b$. (3 marks)
- 10. (a) Let

$$S_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}.$$

Prove that

- (i) $\{S_n\}$ is an increasing sequence, i.e. $S_n < S_{n+1}$.
- (ii) $\{S_n\}$ is bounded; in fact, $S_n < 3$

(3 marks)

(b) Let

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} \right).$$

Define the exponential function e^x as

$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$$

Prove that if α is any fixed real number then

$$\lim_{x \to \infty} x^{\alpha} e^{-x} = 0.$$

(6 marks)

(c) Determine the constants A, B, C and D such that

$$r^{3} \equiv A(r-1)(r-2)(r-3) + B(r-1)(r-2) + C(r-1) + D.$$

Hence, or otherwise, evaluate

$$\lim_{n \to \infty} \left(1^3 + \frac{2^3}{1!} + \frac{3^3}{2!} + \dots + \frac{n^3}{(n-1)!} \right)$$

(6 marks)

- 11. (a) Let $f:[1,+\infty)\to[0,+\infty)$ be a monotonic decreasing non-negative function.
 - (i) Prove that for any $n = 1, 2, 3, \ldots$,

$$f(n+1) \le \int_{x}^{n+1} f(x)dx \le f(n).$$

(ii) Let

$$a_n = \sum_{k=1}^n f(k) - \int_1^n f(x)dx,$$

where $n = 1, 2, 3, \ldots$ Show that the sequence $\{a_n\}$ is convergent. (9 marks)

(b) Hence, or otherwise, deduce that the limit

$$\lim_{n\to\infty} \left(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n+1} - \ln n\right)$$

exists. (6 marks)

12. (a) Let

$$I_{(p,q)} = \int_{a}^{b} (x-a)^{p} (b-x)^{q} dx$$

where b > a, show that, if $n = 1, 2, \ldots$,

(i) $I_{(n,n-1)} = I_{(n-1,n)};$

(i)
$$2(2n+1)I_{(n,n)} = 2n(b-a)I_{(n,n-1)} = n(b-a)^2I_{(n-1,n-1)}$$
. (7 marks)

(b) Deduce the value of $I_{(n,n)}$ when n is a positive integer. (5 marks)

(c) Hence, or otherwise, evaluate

$$\int_{-1}^{1} (1 - x^2)^6 dx.$$

(3 marks)

13. Consider the parabola

$$\Gamma: y^2 = 4ax,$$

where a>0. Γ is rotated anticlockwise about the origin O through an acute angle θ . In its rotated position, the parabola intersects the y-axis at Q. Let R be the point on the parabola which is symmetrical to Q with respect to the axis of the parabola, L.

FIGURE 2

- (a) Find the equation of Γ in its rotated position. (4 marks)
- (b) Hence show that the coordinates of R is

$$(8a\sin\theta\tan\theta, 4a\sin\theta(\tan^2\theta - 1)).$$

(6 marks)

(c) Find the value of θ when the y-coordinate of the point R attains its minimum value. (5 marks)

END OF PAPER