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Helen Liang Memorial Secondary School (Shatin)

Advanced level Pure Mathematics


Supplementary Lecture Notes

Integral Calculus(II)

*Definite Integral*

Definite integral - Integration as limit of a series.

A. Riemann Sum

In theory, 
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The definite integral of a function in an interval, denoted as 

, is defined as the Riemann Sum of the function in that interval.

In particular, 


It is found that the definite integral and the indefinite integral are very closely related.

Newton-Leibniz Theorem




Example A1



(a) Use Riemann Sum

(b) Use indefinite integral

Example A2



Example A3



Example A4
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B. Evaluation of definite integral

Some basic properties:
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Example B1



Integration by substitution:




Consider this example of an invalid subsititue:

Example: Evaluate  

 by using the subsitution 
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Example B2



The following examples illustrated some properties of the definite integral.

All of them can be easily proved by the method of substitution.

Example B3








Example B4








Example B5
Evaluate 

 using integration by parts

Summary:




C. Improper Integrals

1)
f(x) contains discontinuous points in 


Example C1



Example C2



Not all improper integrals are convergent:

Example C3



2)



Example C4



Example C5



D. Inequalities and other theorems

For any continuous function f(x):




Example D1





Show that 




Hence deduce that 


Example D2
Without evaluating the integral, show that 






Example D3
Suppose f(x) is a monotonic increasing function.



Show that 




If 

, evaluate 


E. Differentiation of integrals

Theorem of Calculus:


   where a is a constant independent of x.

Example E1


.

Example E2
Find 


Example E3
Find 


Example E4
Show that for any continuous function f(x),






F. Reduction formula

Example F1
Let 

. Show that 


Example F2
Let 

.



Show that 

.     Hence evaluate 

.

Example F3
Let 

.



Show that 

.



Hence show that 

.

G. Application of Integration (Geometric)

1) Plane Area







Example G1
Find the area of an ellipse.

Example G2
Find the area enclosed between the curves 

 and 

.

2) Volume of Revolution


i) Disc Method




Example G3
Find the volume of a sphere.

Example G4
Find the volume generated by revolving the area between the curves 

 and  

 about the y-axis.


ii) Shell Method



usually for hollow solids

Example G5
Do Example G4 again using shell method.

3) Arc Length





Example G6
Find the length of the circumference of a circle.

Example G7
Find the perimeter of an Astroid:
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4) Surface Area





Example G8
Find the surface area of a sphere.

Exercises

A1
Evaluate  


A2
Evaluate  


A3
Evaluate  
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B1
Evaluate 

 if f(x) is given by:







B2
Evaluate  


B3
p and q are non-zero integers.


Show that 



Hence show that


 and








B4
Evaluate  


B5
Evaluate  


B6
Evaluate 




{B5 & B6 use 

}

Find the values of these integrals, if exists (C1-C5)

C1



C2



C3



C4



C5



D1
Show that 


D2
Show that 


D3
Show that 

   for 

 


Using integration by parts, show that 



Hence evaluate 

.

E1
g(x) is continuous on [a,b] and 



Let 

. Show that f(x) is strictly increasing.

E2
Let 

.


Show that 



(Similar to Example E4)

F1
Let 



Show that 


F2
Let 



Show that 

.  Hence show that 


F3
Let   

,   



Use the identity 

,


show that 

  and  

.


Hence by induction or otherwise, show that 





  and  


G1
Find the area bounded by the curves 

, 

 and 

.

G2
Find the volume of revolution generated by rotating the area enclosed by the circle 

 about the y-axis. (This volume is called a torus)

G3
Find the length of the line 

 from x=0 to x=1.

~~END~~
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