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Helen Liang Memorial Secondary School (Shatin)


Advanced level Pure Mathematics


Supplementary Lecture Notes

Vector

A
2D Vectors (ideas extended to 3D)

Basic Unit Vectors (i, j, k)

Unit vector - vector with magnitude equals to 1.

Addition

2D Vector addition: 
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It is similar in 3D:
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Magnitude

Length of the vector

In 2D:
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In 3D:
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SYMBOL 183 \f "Symbol" \s 12 \h
Unit vector parallel to 
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Section formula

The same in 2D and 3D:
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Example A1
G is the centroid of the triangle ABC. Show that 
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B
Linear Dependency

A number of  vectors are said to be linearly independent if and only if the following statement is true:

"If 
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i.e. any linear combination of those vectors are non-zero except for the trivial case.

Geometric significance:
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In 2D, 
2 vectors are linearly dependent iff they are collinear.




3 (or more) vectors are always linearly dependent.
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In 3D,
3 vectors are linearly dependent iff they are coplanar.



4 (or more) vectors are always linearly dependent.

Example B1
(Theorem)

 If  
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.       (and vice-versa)

Example B2
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Show that they are linearly dependent and express 
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C
Vector Products

Scalar Product / Dot Product
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  where 
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Points to note about dot product:
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Two vectors are perpendicular (orthogonal) iff their dot product is zero.

SYMBOL 183 \f "Symbol" \s 12 \h
Projection of 
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Arithmetic properties of dot product is similar to real number multiplication.


(e.g. commutative, distributive etc.)

Example C1
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Find x if 
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Example C2


If 
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 are non-zero vectors in 3D, show that 

.

Vector Product / Cross Product
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where 
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 is the unit vector obtained from right hand rule.

Some properties








etc.

Example C3
(Theorem)



Show that 


Example C4
(Vector Triple Product)






(a) Show that 




(b) Hence
(i) show that 

.





(ii) show that 

.

Exercise

(All vectors are in 3D unless otherwise specified)

A1
Find k if 

 is parallel to 

.

B1




(a) Show that the three vectors are linearly independent.


(b) Express any given vector 

 into a linear combination of 

.

B2
Find m if the following vectors are linearly dependent:





C1
OABC is a quadrilateral. X, Y, Z are mid-points of BC, CA and AB respectively.


Show that 

.

C2
If 

, show that 

.

C3
Show that 

.
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