1993 Paper 2 Question 11(a)(i)

- a. Let f and g be real-valued functions defined on (a, ∞) where a > 0, and f be twice differentiable satisfying the following conditions:
 - A. g is decreasing,
 - B. $g(t) \ge 0$ and $f''(t) \ge 0$ for all $t \in (a, \infty)$,
 - C. $\lim_{t\to\infty} g(t)f'(t) = 0$.
 - (i) Use the Mean Value Theorem to show that

$$f(n) + f'(n)(t-n) \le f(t) \le f(n) + f'(n+1)(t-n)$$

for all $t \in [n, n+1]$, where n is a positive integer greater than a. (3 marks)