THE HONG KONG POLYTECHNIC UNIVERSITY

Department of Applied Mathematics

Subject Code: AMA201

Subject Title: Mathematics I AMA203

Mathematics IA

Programmes: BEng (Hons) in Electrical Engineering (41070-1)

Higher Diploma in Electrical Engineering (41073-1)

Part-time BEng (Hons) in Electrical Engineering (41076-SF-1)

BEng (Hons) in Electronic and Information Engineering (42070-1)

Higher Diploma in Electronic and Information Engineering (42075-1)

BEng (Hons) in Mechanical Engineering (43078-1)

BEng (Hons) in Mechanical Engineering (43078-2)

Higher Diploma in Mechanical Engineering (43079-1)

BEng (Hons) in Manufacturing Engineering (45074-1)

BEng (Hons) in Manufacturing Engineering (45084-1)

Session:

Semester 2, 2000/2001

Date:

18 May 2001

Time: 6:30 - 9:30 p.m.

Time Allowed: 3 Hours

This question paper has ____5 __ pages (attachments included).

Instructions to Candidates: This question paper has SIX questions.

Attempt FIVE questions.

All questions carry equal marks.

Attachment: Laplace Transform Table

Subject Examiner: Mr. F.Y. Sing

DO NOT TURN OVER THE PAGE UNTIL YOU ARE TOLD TO DO SO

(1) (a) Solve the following system of linear equations

$$\begin{cases} 3x_1 & -2x_2 & +x_3 & =-3 \\ x_1 & +3x_2 & +4x_3 & =10 \\ -2x_1 & +5x_2 & +2x_3 & =9 \end{cases}$$

[6 marks]

(b) Let $C = \begin{bmatrix} 1 & 0 \\ 0.5 & 0.5 \end{bmatrix}$. Find the eigenvalues and corresponding eigenvectors of C. Hence evaluate

$$\lim_{n\to\infty} \mathbf{C}^n \left[\begin{array}{c} 1 \\ 2 \end{array} \right].$$

[9 marks]

(c) Determine if the vectors $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^T$, $\begin{bmatrix} 0 & 4 & -2 \end{bmatrix}^T$, $\begin{bmatrix} 1 & -1 & -5 \end{bmatrix}^T$ are linearly independent. Justify your answer.

[5 marks]

(2) (a) Find the relation between the scalars s and t such that the matrix

$$\mathbf{M} = \begin{bmatrix} 5 & 3 & 1 \\ 3 & -1 & 2 \\ s & t & -1 \end{bmatrix}$$

is nonsingular. Find M^{-1} if s = 1 and t = 0.

[6 marks]

(b) Let $\mathbf{B} = \begin{bmatrix} 8 & 8 & -8 \\ 10 & -3 & 1 \\ 10 & 5 & -7 \end{bmatrix}$. Find the eigenvalues and the corresponding eigenvectors

tors of B. Hence find a nonsingular matrix P and a diagonal matrix D such that $PDP^{-1} = B$.

[14 marks]

(3) (a) By the method of variation of parameters, find the general solution of the differential equation

$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = \frac{e^{-2x}}{x^2}, \ x > 0.$$

[10 marks]

(b) Using the method of undetermined coefficients, find constants A, B, C and D so that $y_p(x) = (Ax + B)\cos 2x + (Cx + D)\sin 2x$ is a particular solution of the differential equation

$$\frac{d^2y}{dx^2} + y = 3\sin 2x + x\cos 2x.$$

Hence, obtain the general solution of the differential equation.

[10 marks]

(4) (a) Solve the first order differential equation

$$\frac{dy}{dx} + \left(\frac{2}{x}\right)y = \frac{x}{x^4 + 1}.$$

[8 marks]

(b) Use Laplace Transform to find the solution of the initial value problem

$$\frac{d^2y}{dt^2} + 9y = 3\sin 2t,$$

given that y(0) = -1 and y'(0) = 1.

[12 marks]

(5) (a) The demand functions for products A and B are defined respectively by

$$q_A = \frac{50\sqrt[3]{y}}{\sqrt{x}}$$
 and $q_B = \frac{75x}{\sqrt[3]{y}}$,

where x>0 and y>0 denote the respective prices of products A and B. Compute the partial derivatives $\frac{\partial q_A}{\partial x}$, $\frac{\partial q_A}{\partial y}$, $\frac{\partial q_B}{\partial x}$ and $\frac{\partial q_B}{\partial y}$. Hence deduce that

the two products are competitive, that is, $\frac{\partial q_A}{\partial y} > 0$ and $\frac{\partial q_B}{\partial x} > 0$.

[6 marks]

(b) Let w = g(u) be a differentiable function of u, and suppose $w = g(x^2 - 2xy)$. Use the chain rule of differentiation to show that

$$\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial x \partial y} = 0 \text{ when } x = y.$$

[6 marks]

(c) Find all critical points of the function

$$f(x,y) = \frac{x^3 + 8y^3}{3} - 2(x^2 + y^2)$$

and determine their nature.

[8 marks]

(6) (a) Use Lagrange Multiplier Method to find the maximum of f(x, y, z) = xyz, where x > 0, y > 0, z > 0, subject to the constraint x + 2y + 3z = 36.

[7 marks]

(b) The polar and the rectangular coordinates are related by the equations

$$\begin{cases} r\cos\theta - x = 0 \\ r\sin\theta - y = 0 \end{cases}.$$

- (i) Assuming that x and y are defined as functions of r and θ by these equations, compute $\frac{\partial x}{\partial r}$, $\frac{\partial y}{\partial r}$, $\frac{\partial x}{\partial \theta}$ and $\frac{\partial y}{\partial \theta}$.
- (ii) Assuming that r and θ are defined as functions of x and y by these equations, use implicit differentiation to compute $\frac{\partial r}{\partial x}$, $\frac{\partial \theta}{\partial x}$, $\frac{\partial r}{\partial y}$ and $\frac{\partial \theta}{\partial y}$.
- (iii) Verify that $\begin{bmatrix} \frac{\partial r}{\partial x} & \frac{\partial r}{\partial y} \\ \frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial y} \end{bmatrix}^{-1} = \begin{bmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{bmatrix}$

[8 marks]

. .

(c) Use total differential to approximate

$$\sqrt[3]{1.98^2 + 2.03^2}$$
.

[5 marks]

Laplace Transform Table

Definition:
$$F(s) = \int_{0}^{\infty} e^{-st} f(t) dt$$
.

Useful Formulas: Suppose $F(s) = \mathfrak{L}\{f(t)\}\$. Then

- (1) First derivative: $\mathfrak{L}\{f'(t)\} = s F(s) f(0);$
- (2) Second derivative: $\mathfrak{L}\{f''(t)\} = s^2 F(s) s f(0) f'(0);$
- (3) Integral: $\mathfrak{L}\left\{\int_{0}^{t} f(\tau)d\tau\right\} = \frac{F(s)}{s};$
- (4) Exponential multiplier: $\mathfrak{L}\left\{e^{at} f(t)\right\} = F(s-a).$

Table of Laplace Transform

f(t)	F(s)
1	$\frac{1}{e}$
e^{at} (a being a real constant)	$\frac{1}{s-a} \text{for } s > a$
$\frac{e^{at} - e^{bt}}{a - b} \text{ for } a \neq b$	
$\frac{e^{at} - e^{at}}{a - b} \text{ for } a \neq b$ $\frac{a e^{at} - b e^{bt}}{a - b} \text{ for } a \neq b$	$\frac{s}{(s-a)(s-b)}$
$\cos \omega t \ (\omega > 0)$	$\frac{s}{s^2 + \omega^2}$
$\sin \omega t \ (\omega > 0)$	$\frac{\omega}{s^2 + \omega^2}$
$\frac{1}{(b^2 - a^2)} \left(\frac{\sin at}{a} - \frac{\sin bt}{b} \right) \text{ for } a^2 \neq b^2$	$\frac{1}{(s^2+a^2)(s^2+b^2)}$
$\frac{1}{(b^2 - a^2)} (\cos at - \cos bt) \text{ for } a^2 \neq b^2$	$\frac{s}{(s^2 + a^2)(s^2 + b^2)}$
t^n (n being a positive integer)	$\frac{n!}{s^{n+1}}$
$\frac{t\sin\omega t}{2\omega}$	$\frac{s}{(s^2+\omega^2)^2}$
$\sin \omega t - \omega t \cos \omega t$	<u> </u>
$\frac{2\omega^3}{e^{-\alpha t}\sin\omega t}$	$\frac{(s^2 + \omega^2)^2}{\omega}$
$e^{-\alpha t}\cos \omega t$	$\frac{(s+\alpha)^2+\omega^2}{s}$
e coswi	$\frac{(s+\alpha)^2 + \omega^2}{s^2 - \omega^2}$
$t \cos \omega t$	$\frac{s}{(s^2+\omega^2)^2}$