Tutorial 1 Indices and logarithms

1. Carry out each of the following operation. Write all answers with positive exponents and simplify where possible.
(a) $\frac{7^{-3}}{7^{-5}}$
(b) $\frac{3^{5} \cdot 2^{2}}{3^{8}}$
(c) $\frac{4^{6} \cdot 3^{4}}{4^{5} \cdot 3^{3}}$
(d) $\left(\frac{2}{5}\right)^{-2}$
2. Evaluate the following :
(a) $49^{-\frac{1}{2}}$
(b) $8^{-\frac{1}{3}}$
3. In the compound interest formula $A=P(1+r)^{n}$,
(a) if $\mathrm{P}=100,000, \mathrm{r}=8 \%, \mathrm{n}=5$, find the value of A ,
(b) if $\mathrm{A}=21,003.42, \mathrm{P}=10,000, \mathrm{n}=5$, find the value of r ,
(c) if $\mathrm{A}=80957.13, \mathrm{P}=35000, \mathrm{r}=15 \%$, find the value of n .
4. The loudness, measured in decibels, is defined by the function

$$
\mathrm{b}=10 \log \left(\frac{I}{I_{0}}\right)
$$

where P is the intensity of the sound and I_{o} is the minimum intensity detectable. How many times greater is the intensity of $\mathbf{b}_{\mathbf{1}}=105 \mathrm{~dB}$ (factory) than the intensity of $\mathbf{b}_{\mathbf{2}}=80 \mathrm{~dB}$ (busy street)?

Solution

1.(a) $\frac{7^{-3}}{7^{-5}}=49$
(b) $\frac{3^{5} \cdot 2^{2}}{3^{8}}=\frac{4}{27}$
(c) $\frac{4^{6} \cdot 3^{4}}{4^{5} \cdot 3^{3}}=12$
(d) $\left(\frac{2}{5}\right)^{-2}=\frac{1}{\left(\frac{2}{5}\right)^{2}}=\frac{25}{4}$
2. (a) $49^{-\frac{1}{2}}=\frac{1}{7}$
b) $8^{-\frac{1}{3}}=\frac{1}{2}$
3. (a)

$$
\begin{aligned}
& \mathrm{A}=\mathrm{P}(1+\mathrm{r})^{\mathrm{n}} \\
& \mathrm{~A}=146,932.81
\end{aligned}
$$

(b)

$$
\begin{array}{r}
\mathrm{A}=\mathrm{P}(1+\mathrm{r})^{\mathrm{n}} \\
r= \\
0.16 \\
\text { or } \\
=16 \%
\end{array}
$$

(c)

$$
\begin{array}{r}
\mathrm{A}=\mathrm{P}(1+\mathrm{r})^{\mathrm{n}} \\
n=6
\end{array}
$$

4. Given $\mathrm{b}_{1}=105 \mathrm{~dB}$

$$
\begin{aligned}
& \mathrm{b}_{2}=80 \mathrm{~dB} \\
& \frac{I_{1}}{I_{2}}=316
\end{aligned}
$$

The sound intensity in the factory is 316 times greater than the busy street.

