Unit 1 Indices and logarithms

Learning Objectives

The students should be able to:

- Use the laws of indices to solve simple problems.
- **I** Use the properties of logarithms to solve simple problems.

Indices

In dealing with expressions containing exponents along with addition or subtraction or multiplication or division, we work with the exponents first. Lets consider the following examples.

Example 1 (a) $3^2 - 2^3 = 9 - __= ___$

- (b) $2^4 + 5^3 = 16 + ___ = ___$
- (c) $3 \times 10^4 = 3 \times ___= 30000$

Example 2 Write each of the following in another way by using exponents.

- (a) (ab)(ab)(ab)
- (b) –a.a.a.a
- (c) 4.a.b.4.b.a.a.a

Solution:

- (a) (ab)(ab)=(ab)----
 - =a--b--
- (b) $-a.a.a.a = -a^{-1}$ (c) $4.a.b.4.b.a.a.a.b = 4^2a^{-1}b^{-1}$

Example 3 Evaluate each of the following :

(a)
$$-3^4$$

(b) $(-3)^4$

(c) $2(1.1)^3$

Solution:

(a) $-3^4 = -1(3)^4 = -1.3.3.$ _____ = -____ (b)(-3)^4 = (-3)(-3)(____)(___) = _____ (c) $2(1.1)^3 = 2 \times 1.1^3$ = $2 \times$ _____ = _____

1. Multiplication of Exponential Numbers

 $a^{m}.a^{n} = a^{m+n}$

Consider

$$2^{3}.2^{4} = (2.2.2)(2.2.2.2) = 2.2.2.2.2.2.2 = 2^{7} = a^{5} a^{2}.a^{3} = (a.a)(a.a.a) = a.a.a.a.a = a^{5} a^{5} a^{5} = a^{5} a^{5}$$

In general,

2. Division of Exponential Numbers Consider

$$\frac{4^{7}}{4^{3}} = \frac{4.4.4.4.4.4.4}{4.4.4} \qquad \qquad \frac{a^{5}}{a^{3}} = \frac{a.a.a.a.a}{a.a.a} = a^{2}$$

In general,

$$\frac{a^m}{a^n} = a^{m-n}$$

Example 4 Simplify the following : 2^{19}

a)
$$\frac{3}{3^{11}} = 3^{19-11} = ___$$

b) $\frac{X^9}{X^3} = X = ___$
c) $\frac{a^{10}b^8}{a^3b^5} = a^{10-3}b = = a^7b$

Consider

$$\frac{a^n}{a^n} = a^{n-n}$$
$$= a^0.....(1)$$

On the other hand

$$\frac{a^n}{a^n} = 1.....(2)$$

Compare (1) & (2): $a^0 = 1$

where a is any real number and $a \neq 0$

For examples,

$$2^0 = 1$$
, $(-3)^0 = 1$ and $10^0 = 1$

Recall

 $\frac{a^m}{a^n} = a^{m-n} \dots (*)$ Consider $\frac{2^3}{2^4} = \frac{2 \cdot 2 \cdot 2}{2 \cdot 2 \cdot 2 \cdot 2} = \frac{1}{2}$

 $\frac{2^{3}}{2^{4}} = \frac{2 \cdot 2 \cdot 2}{2 \cdot 2 \cdot 2 \cdot 2} = \frac{1}{2}$ Consider $\frac{3^{4}}{3^{6}} = \frac{3 \cdot 3 \cdot 3 \cdot 3}{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3} = \frac{1}{3^{2}}$

If we use the division rule (*)

$$\frac{2^{3}}{2^{4}} = 2^{3-4} = 2^{-1}$$

$$\therefore \qquad 2^{-1} = \frac{1}{2}$$

If we use the division rule (*)

$$\frac{3^4}{3^6} = 3^{4-6} = 3^{-2}$$

$$\therefore \quad 3^2 = \frac{1}{3^2}$$

In general

$$a^{-n} = a^{0-n} = \frac{a^0}{a^n}$$

 $a^{-n} = \frac{1}{a^n}$

$$(a b)^n = a^n b^n \qquad \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n} \qquad (a^m)^n = a^{mn}$$

Example 5 Simplify the following :

(a)
$$(a^2 b)^3$$
 (b) $(\frac{x^3}{y})^2 (y^3)^2$

Solution :

(a)
$$(a^2b)^3 = a^-b^-$$
 (b) $(\frac{x^3}{y})^2(y^3)^2 = x^-y^-$

Foundation Mathematics

Example 6 Carry out each of the following operation. Write all answers with

positive exponents and simplify where possible.

(a)	7^{-1}	(b)	2-4
· ·			

(c)
$$5(5^3)$$
 (d) $\frac{2^{-5}}{2^3}$

Solutions:

(a)
$$7^{-1} = \frac{1}{7}$$

(b) $2^{-4} = \frac{1}{2^{--}} \frac{or}{a} = \frac{1}{2^{--}} \frac{1}{a^{--}} \frac{1}{a^{--}}$
(c) $5(5^3) = 5^1 \times 5^{-3}$
 $= 5^{1+(-3)} = 5^{-2}$
 $= \frac{1}{2^{--}} \frac{1}{a^{--}} \frac{1}{a^{--}}$
(d) $\frac{2^{-5}}{2^3} = 2^{-5-3} = 2^{-8}$
 $= \frac{1}{2^{--}} \frac{1}{a^{--}} \frac{1}{$

3. Radicals

If $x^2 = y$, then x is a square root of y

for example $7^2 = 49$ $\therefore 7 = \sqrt[2]{49}$ or $7 = \sqrt{49}$

similarly, $\sqrt{81} = 9$ (:: $9^2 = 81$)

If $x^3 = y$, then x is a cube root of y

for example, $4^3 = 64$ (:: $\sqrt[3]{64} = 4$)

In general, if $x^n = y$, where n is a positive integer, then x is a nth root of y. for example, $2^4=16$ $\therefore \sqrt[4]{16} = 2$

Example7 Find the values of the following : ∜64 (a) ∜100000 (b) $\sqrt[4]{81}$ (c) (a) $\sqrt[6]{64} = __$ ($\therefore 2^6 = 64$) (b) $\sqrt[5]{100000} = __$ ($\therefore 10^5 = 100000$) (c) $\sqrt[4]{81} = __$ ($\therefore 3^- = 81$) Solution : 144=9.16 $\sqrt{144}=12$ Consider and $\sqrt{9} \cdot \sqrt{16} = 3 \cdot 4$ =12 $\therefore \sqrt{144} = \sqrt{9}\sqrt{16}$ $\sqrt{9 \cdot 16} = 3 \cdot 4$ $\sqrt{ab} = \sqrt{a}\sqrt{b}$ √a In general $\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}$ Note that $\sqrt{25} = \sqrt{16+9}$ e.g. but $\sqrt{16} + \sqrt{9} = 4 + 3 = 7$ $\sqrt{25} = 5$ $\therefore \quad \sqrt{16+9} \neq \sqrt{16} + \sqrt{9}$ $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$ $\sqrt[n]{ab} = \sqrt[n]{a}\sqrt[n]{b}$ In general

Example 8 Find the values of the following functions :

(a)
$$f(x) = \sqrt{\frac{x}{64}}$$
 when $x = 25$
(b) $f(x) = x^{0.5}$ when $x = 0.027$

Г

CMV 6111

Solution :
(a)
$$f(25) = \sqrt{\frac{25}{5}} = \frac{\sqrt{25}}{\sqrt{5}}$$

 $= \frac{5}{5}$
(b) $f(0.027) = \sqrt[3]{\frac{27}{5}} = \frac{\sqrt[3]{27}}{\sqrt[3]{5}}$
 $= \frac{3}{5}$ or 0.3

4. Fractional Indices

Consider

$$\begin{pmatrix}
a^{\frac{1}{n}} \\
a^{n} \\
a^{n} \\
=a^{1} = a \\
\vdots \\
a^{\frac{1}{n}} = \sqrt[n]{a}$$
Similarly,

$$\underline{a^{\frac{m}{n}} = (\sqrt[n]{a})^{m} = \sqrt[n]{a^{m}}}$$
Example 9 Evaluate the following:
(a) $81^{\frac{3}{4}}$ (b) $1000^{\frac{2}{3}}$

Solutions:

(a)
$$81^{\frac{3}{4}} = (\sqrt[4]{2})^3 = (_)^3 = _$$

(c) $(\frac{9}{25})^{\frac{1}{2}} = \sqrt{\frac{9}{25}} = \frac{\sqrt{9}}{\sqrt{_}} = \frac{3}{\sqrt{_}}$

(b)
$$1000^{\frac{2}{3}} = (\sqrt[3]{2})^2 = (10)^2 =$$

(c) $\left(\frac{9}{25}\right)^{\frac{1}{2}}$

Solution:

Example 10 In the compound interest formula $A = P (1+r)^n$, if A = 54874.32,

P = 25000, n = 6, find the value of r.

5. Definition of Logarithms

If a number $X = a^y$, where **a** is positive and **a?** 1, the index **y** is called the **logarithm** of the number X to the base **a**. In symbol, $y = \log_a X$.

N.B. log_aX is undefined only for positive values of X

For example, $2^{3} = 8$ $\therefore \log_{2} 8 = 3$ $3^{4} = 81$ $\therefore \log_{3} 81 = 4$

When the base a is not stated in $\log_a X$, it may be assumed a = 10. This is called the **common logarithm.**

For example,

$$\log 1000 = \log_{10} 1000$$

 $= 3$
 $\log 0.01 = -2$
 $(\because 10^{-2} = \left(\frac{1}{10^{-2}}\right) = ___)$

Unit 1: Indices and Logarithms

Page 8 of 10

6. Properties of Logarithms :

- 1. $\log_a a = 1$
- $2. \qquad \log_a 1 = 0$
- $3. \qquad log_a MN = log_a M_+ log_a N$
- 4. $\log_a \frac{M}{N} = \log_a M \log_a N$
- 5. $\log_a X^n = n \log_a X$

Example 11 Find the values of the following:

(a) $\log_7 11 + \log_7 \left(\frac{1}{11}\right)$ (b) $\log_6 - \log_60$ (c) $\log_5 125$

Solution:

(a)
$$\log_7 11 + \log_7 \left(\frac{1}{11}\right)$$

 $\log_7 \left(11 \times \frac{1}{11}\right) = \log_7 1 =$ ____
(b) $\log 6 - \log 60$
 $\log \frac{6}{100} = \log \frac{1}{10}$
 $\log 10^{-1} =$ ____
(c) $\log_5 125$
 $= \log_5 5^3$
 $= 3 \log_5$ ____
 $=$ ____

Example 12 In the compound interest formula $A = P (1 + r)^n$, if A = 20000, P = 10000,

r = 12%, find n correct to 2 decimal places.

Solutions: $A = P (1 + r)^{n}$ $20000 = 10000 (1 + 12\%)^{--}$ $\frac{20000}{10000} = (1 + 0.12)^{n}$ $2 = (1.12)^{n}$ Taking logarithm on both sides, $\log 2 = \log(1.12)^{n}$ $\log 2 = n \log 1.12$

$$\therefore n = \frac{\log 2}{\log 1.12}$$
$$n = ___$$