Unit 12: The Sine formula and the Cosine formula

Objectives

Students should be able to

- state the sine formula
- state the cosine formula
- apply the sine formula to solve simple problems
- apply the cosine formula to solve simple problems

The Sine formula and the Cosine formula

1.1 The Sine formula

In any triangle ABC (figure 1),

The area of the triangle can be expressed as $\frac{1}{2}ab\sin C$ or $\frac{1}{2}bc\sin A$ or

$$\frac{1}{2}ac\sin B$$
. Hence $\frac{1}{2}ab\sin C = \frac{1}{2}bc\sin A = \frac{1}{2}ac\sin B$.

Dividing throughout by $\frac{1}{2}abc$, we obtain the Sine formula :

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

i.e. $\frac{a}{\sin A} = \frac{b}{\sin B}$ or $\frac{b}{\sin B} = \frac{c}{\sin C}$ or $\frac{c}{\sin C} = \frac{a}{\sin A}$

1.2 The Cosine formula

The cosine formula can be established for any triangles. We consider the cases where C is acute and C is obtuse.

9/2002

 $AB^2 - BN^2 = AN^2 = AC^2 - CN^2$ In figure 2, $c^{2} - (a - x)^{2} = AN^{2} = b^{2} - x^{2}$ where CN = xLeading to Which can be simplified to $2ab \cos C = a^2 + b^2 - c^2$ with the substitution $x = b \cos C$ $c^{2} - (a+x)^{2} = AN^{2} = b^{2} - x^{2}$ where CN = xIn figure 3, Which can be simplified to $2ab \cos C = a^2 + b^2 - c^2$ with the substitution $x = b \cos(180^{\circ}-C)$ Thus, we establish the Cosine formula : $c^2 = a^2 + b^2 - 2ab\cos C$

or

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

We can use these formulas to solve problems on triangles.

2 **Application of the Sine Formula**

The sine formula can be applied to solve a triangle (I) when two angles and one side or (II) when two sides and a non-included angle of the triangle are given. Care should be taken since ambiguity case may arise in (II).

2.1 Two angles and any one side of a triangle are given

Example 1

In $\triangle ABC$ of figure 4, $A = 50^{\circ}$, $B = 70^{\circ}$ and a = 10cm. Solve the triangle. (Answers correct to 3 significant figures if necessary.)

CMV6111

Solution

From subtraction, $C = 60^{\circ}$

By sine formula, $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

2.2 Two sides and one angle of a triangle are given

2.2.1 Two sides and one opposite angle are given

Example 2 In \triangle ABC, find B if A = 30°, b = 10cm and a = 4cm.

Solution

From sine formula, $\sin B = 10x \sin_{-1}^{\circ}/4$

 $sinB = __> 1$ which is impossible

Hence, no triangle exists for the data given. The situation can further be illustrated by accurate drawing as in figure 5.

Example 3

In \triangle ABC, find B if A = 30°, b = 10cm and a = 5cm.

Solution

By sine formula, $\sin B = __x \sin 30^{\circ}/5$ $\sin B = B = \circ$

In this case, only one right-angled triangle can be drawn as in figure 6.

Unit 12: The Sine formula and the Cosine formula

9/2002

Example 4 In \triangle ABC, find B if A = 30°, b = 10cm and a = 6cm.

Example 5 In \triangle ABC, find B if A = 30°, b = 10cm and a = 15cm. Solution By sine formula, sinB = 10x sin_ $^{\circ}/15$ sinB = B = ____ $^{\circ}$

Only one solution exists as shown in figure 8. No ambiguity in this case.

Unit 12: The Sine formula and the Cosine formula

page5 of8

From the above examples, we can see that if we apply the sine formula to solve a triangle when 2 sides and 1 opposite acute angle are given, we may have

- (i) *no solutions* [example 2],
- (ii) *one (unique) solution* [example 3 and example 5],
- (iii) *two solutions* [example 4].

2.2.2 Two sides and one included angle are given

Example 6

Given a triangle ABC, in which a = 28cm, c = 40cm, $B = 35^{\circ}$. Find the length AC and correct your answer to 1 decimal place.

Solution

By cosine formula, $b^2 = c^2 + a^2 - 2ca \cos B$

 $b^2 = 28^2 + \underline{}^2 - 2(28)(\underline{})\cos 35^\circ$ $b = \underline{}\cos 35^\circ$

9/2002

2.2.3 Three sides are given

Example 7

Given a triangle ABC, in which a = 5 cm, b = 6 cm, c = 7 cm. Find the angles of the triangle. (*Correct the answers to the nearest tenth degree.*)

2.2.4 Three angles are given

Since the angles do not restrict the size of a triangle, there exists infinitely many triangles that satisfy the given condition.

Example 8

Given a triangle ABC, in which $A = 50^\circ$, $B = 60^\circ$, $C = 70^\circ$. Find the lengths of the sides of the triangle.

Solution

Since the angles do not restrict the size of a triangle, there exists infinitely many triangles that satisfy the given condition. These triangles are all similar.