Unit 13: Trigonometry - Problems in 2 dimensions

Learning Objectives

Students should be able to

- use compass bearing and true bearing to measure directions
- define the 'angle of elevation' and the 'angle of depression'
- use trigonometric formulas in solving two-dimensional problems
- formulate and solve practical two-dimensional problems

Trigonometry - Problems in 2 dimensions

1. Basic Terms

1.1 Bearing

Bearing is used to indicate the direction of an object from a given point.
(a) Compass bearing : the angle measured either form the north or from the south. i.e. $\mathrm{N} x^{\circ} \mathrm{E}$ or $\mathrm{N} x^{\circ} \mathrm{W}$ or $\mathrm{S} x^{\circ} \mathrm{E}$ or $\mathrm{S} x^{\circ} \mathrm{W}$ where $0^{\circ}<\mathrm{x}<90^{\circ}$
(b) True bearing : the angle measured clockwisely from the north direction.

Example 1

Figure 1
The compass bearing of A from O is $\quad \mathrm{S} \quad{ }^{\circ} \mathrm{W} \quad$ while the true bearing of A from O is \qquad .

1.2 Angle of Elevation and Angle of Depression

The angles of elevation and depression are the angles between the line of sight and the horizontal.

Figure 2

Horizontal

2. Applications to Problems in Two Dimensions

2.1 Solving problems in 2 dimensions involving right-angled triangles

For a right-angled triangle,
$a^{2}+b^{2}=c^{2}$
$\sin x=b / c$
$\cos x=a / c$
$\tan x=b / a$

Figure 3

Example 2

The angle of elevation of a balloon from a man on the ground is 41° and it is 200 m from the man.
(a) What is the height of the balloon above the ground ?
(b) If the balloon rises vertically 100 m further, what is the angle of elevation of the balloon from the man?
[Answer correct to 1 decimal place]
Solution:
(a) $\sin 41^{\circ}=\mathrm{AN} / \mathrm{AM}$

$$
\begin{aligned}
\mathrm{AN} & =\mathrm{AM} \sin 41^{\circ}=200 \sin 41^{\circ} \\
& =131.2 \mathrm{~m}
\end{aligned}
$$

(b) $\cos 41^{\circ}=\quad / \mathrm{AM}$
$\mathrm{MN}=\mathrm{AM} \cos 41^{\circ}=$ \qquad $\cos 41^{\circ}$
$=$ \qquad m

Figure 4
$\tan \angle \mathrm{BMN}=\mathrm{BN} / \mathrm{MN}=(100+$ \qquad)/ \qquad
$\angle \mathrm{BMN}=$ \qquad ${ }^{\circ}$

2.2 Solving problems in 2 dimensions using the sine or the cosine formula

The Sine Formula: In any $\triangle \mathrm{ABC}, \frac{a}{\sin \mathrm{~A}}=\frac{b}{\sin \mathrm{~B}}=\frac{c}{\sin \mathrm{C}}$
The Cosine Formula: In any $\triangle \mathrm{ABC}, c^{2}=a^{2}+b^{2}-2 a b \cos \mathrm{C}$

Example 3

A bridge 11 km long connects city T in the south and city K in the north. The true bearing of a ship S is 120° from T. The distance between the ship S and T is 15 km . Find the distance between the ship S and K .
[Answer correct to 1 decimal place]
Solution
An appropriate drawing is necessary in solving such a problem.
By the cosine rule,

Example 4

A student tried to measure the height of Yashima hill. The angle of elevation of the top of the hill was found to be 23° from a point A and 44° from a point B . The distance between A and B was 300 m . Find the height of Yashima hill to the nearest m .

Solution

From figure 7,
$\angle A Y B=44^{\circ}-$ \qquad
$=$ \qquad ${ }^{\circ}$

Figure
BY can be found from the sine rule,
$\mathrm{BY} / \sin 23^{\circ}=$ \qquad /sin \qquad o

BY= \qquad m
(to the nearest m)

Example 5

In figure 8 , a ship leaves a harbour A and sails at $22 \mathrm{~km} / \mathrm{h}$ for 3 hours on a course of $\mathrm{N} 75^{\circ} \mathrm{E}$ to another harbour B. It then sails at $18 \mathrm{~km} / \mathrm{h}$ for 7 hours on a course of $\mathrm{S} 25^{\circ} \mathrm{E}$ to harbour C. Find
(a) the distance between A and C
(b) the compass bearing of A from C .
[Answers correct to 1 decimal place]
Solution:
(a) Distance $\mathrm{AB}=$ speed x time $=$ \qquad $x 3=$ \qquad
$\mathrm{BC}=$ \qquad x $7=$ \qquad km
$\angle \mathrm{ABC}=75^{\circ}+{ }^{\circ}{ }^{\circ}={ }^{\circ}{ }^{\circ}$
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}-2 \mathrm{AB} \cdot \mathrm{BC} \cos$? ABC
$=66^{2}+$ ___ $^{2}-2 \times 66 \mathrm{x}$ \qquad \cos \qquad o
$\mathrm{AC}=$ \qquad km
(b) By $\sin \mathrm{C} / 66=\sin$ \qquad º/152.1
$\mathrm{C}=$ \qquad ${ }^{0}$

Figure 8

The compass bearing of A from C is N \qquad ${ }^{0} \mathrm{~W}$.

