Tutorial 14 Mensuration

1. Find the area of the following figures:
a. A triangle with base $=10 \mathrm{~cm}$ and height $=5 \mathrm{~cm}$
b. A circle with diameter $=10 \mathrm{~cm}$
c. A trapezium with height $=8 \mathrm{~cm}$, length of two parallel sides are 10 cm and 18 cm respectively
d. A sector of radius 12 cm and sector angle $=45^{\circ}$.
2. The internal measurements of a rectangular box $40 \mathrm{~cm} \times 120 \mathrm{~cm} \times 40 \mathrm{~cm}$. Three spheres of radius 20 cm just fit in the box.
a. Calculate the volume of one sphere.
b. Calculate the unoccupied volume in the box.

3.

A triangular prism has two parallel equilateral triangular faces. The length of one side of the triangular faces is 4 cm . The length of the prism is 15 cm . a. Find the volume of the prism.

b. Find the total surface area of the prism.
4. ABC is an isosceles triangle inscribed in a circle such that A, B and C are points on the circumference of the circle. AC is a diameter, $\mathrm{AB}=\mathrm{BC}=10 \mathrm{~cm}$. Find the area of the shaded portion.

Solutions

1a..Area $=\frac{1}{2}$ base x height $\mathrm{A}=\frac{1}{2} 10 \times 5=25 \mathrm{~cm}^{2}$
1b. Area $=\pi \mathrm{r}^{2}=\pi 5^{2}=78.5 \mathrm{~cm}^{2}$
1c. Area $=\frac{h}{2}(a+b)=\frac{8}{2}(10+18)=112 \mathrm{~cm}^{2}$
1d.Area $=\frac{1}{2} r^{2} \theta=\frac{1}{2} 12^{2} \frac{45 \pi}{180}=18 \pi \quad \mathrm{~cm}^{2}$

2a. Volume of sphere $=\frac{4}{3} \pi(20)^{3}=33510.3 \mathrm{~cm}^{2}$
2b. Unoccupied volume $=1200 \times 40 \times 40-3(33510.3)=91469 \mathrm{~cm}^{2}$

3a. Volume of prism $=\mathrm{X}$-sectional area x length

$$
=\frac{1}{2} 4 * 4 \sin 60^{\circ}(15)=103.9 \mathrm{~cm}^{2}
$$

3b. Total surface area $=2 *\left(\frac{1}{2} 4 * 4 \sin 60^{\circ}\right)+3 *(4 \times 15)$
$=193.8 \mathrm{~cm}^{2}$
4. Area of ? $\mathrm{ABC}=\frac{1}{2}(10)(10)=50 \mathrm{~cm}^{2}$ (since ? ABC is a right angle)
radius of circle $=\frac{1}{2} \sqrt{10^{2}+10^{2}}=\frac{1}{2} \sqrt{200}$
Area of the shaded portion $=\pi\left(\frac{1}{2} \sqrt{200}\right)^{2}=50 p-50$
$=50(\pi-1)=107.1 \mathrm{~cm}^{2}$

