Unit 14 : Mensuration

Objectives

Students should be able to

- identify common plane figures and solids
- find the area of common plane figures
- understand the properties of similar figures
- find the volume of common solids
- to solve miscellaneous problems involving daily applications of mensurations

Mensuration

1. Common plane figures

1.a Triangle

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \text { base } \mathrm{x} \text { height } \\
& =\frac{1}{2} \mathbf{b h}
\end{aligned}
$$

1.b Square

$$
\begin{aligned}
\text { Area } & =(\text { length of a side })^{2} \\
& =\mathbf{a}^{2}
\end{aligned}
$$

a

a
1.c Rectangle

$$
\begin{aligned}
\text { Area } & =\text { length } \mathrm{x} \text { breadth } \\
& =\mathbf{a} \mathbf{b}
\end{aligned}
$$

a

b
1.d Parallelogram

Area =base x height
$=\mathrm{bh}$

b
1.e Trapezium

Area
$=\frac{1}{2}$ (sum of lengths of the parallel sides) x height
$=\frac{h}{2}(\mathrm{a}+\mathrm{b})$

b
1.f Circle

Circumference $=2 \pi r$
Area $=\pi r^{2}$
where $r=$ radius

1.g Sector

Area $A=\frac{1}{2} r^{2} \theta$
Arc length $L=r \theta$

Example: a chinese fan

2. Solids

| 2.a Cube |
| :--- | :--- |
| Surface area $=6 \mathrm{a}^{2}$ |
| Volume $=\mathrm{a}^{3}$ |
| Example: dice |
| 2.b Rectangular cuboid |
| \quad Volume $=\mathrm{ab} \mathrm{c}$ |
| Surface area $=4 \mathrm{ab}+2 \mathrm{bc}$ |
| Example: mahjong |
| Volume $=($ Regular cross-sectional area $) \mathrm{x}$ Length |
| Surface area $=$ area of 3 rectangular faces + |
| area of 2 triangular faces |

| 2.f. Cylinder |
| :--- | :--- |
| Surface Area $=2 \pi \mathrm{r}^{2}+2 \pi \mathrm{rh}$ |
| Volume $=\pi \mathrm{r}^{2} \mathrm{~h}$ |
| where $\mathrm{r}=$ radius and $\mathrm{h}=$ height |
| Example: can |\quad| 2.g Cone |
| :--- |
| Surface Area $=\pi \mathrm{r}^{2}+\pi \mathrm{rL}$ |
| Volume $=\frac{1}{3}$ base area x height |
| $=\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h}$ |
| where $\mathrm{r}=$ radius and $\mathrm{h}=$ height |
| $\mathrm{L}=\sqrt{r^{2}+h^{2}}$ |\quad| Example: conic paper cup |
| :--- |

Example 1
A plot of land is in the shape of a semicircle joining a square as shown. The length of one side of the square is 20 m .
(a) Find the total area of the land.
(b) A circular swimming pool of radius

5 m is to be constructed in this plot and grass would be planted in all area surrounding the pool. Find the cost of plant grass given the cost for plant $1 \mathrm{~m}^{2}$ of grass is $\$ 12$.

Solution
(a) Total area $=\frac{1}{2} \pi r^{2}+a^{2}$

$$
=\frac{1}{2} \pi()^{2}+_^{2}=\ldots \mathrm{m}^{2}
$$

(b) Area of grassland $=\ldots-\pi(\ldots)^{2}=$ \qquad m^{2}
Cost $=\$ 12^{*}$ \qquad $=$ \$ \qquad (rounding up to the nearest dollar)

Example 2

A solid metal sphere is dropped inside a cylindrical glass bottle of internal radius 5 cm as shown.
(a) Find the volume of the largest sphere that can fit into the bottle.
(b) Find the volume of water to fill the bottle completely given the internal height of the bottle is 18 cm .

Solution

a. Volume of the largest sphere $=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi\left({ }_{---}\right)^{3}=$ \qquad cm^{3}
b.Volume of water required $=$ internal volume of bottle - volume of sphere
$=\pi \mathrm{r}^{2} \mathrm{~h}-$ \qquad $=$ \qquad
\qquad
\qquad cm^{3}

3. Similar Figures

3.1 Area ratio

If two figures have linear ratio $a: b$, then the area ratio would be $a^{2}: b^{2}$.

3.2 Volume ratio

If two solids have linear ratio $a: b$, then the volume ratio would be $a^{3}: b^{3}$.
Example 3

Two similar models have a linear ratio 5 to 2 . The height of the larger model is 20 cm .
a. Find the height of the smaller model.
b. Find the surface area of the smaller model given the surface area of the larger model is $4000 \mathrm{~cm}^{2}$.
c. Find the volume of the larger model given the volume of the smaller model is $8000 \mathrm{~cm}^{3}$.
Solution

a. $\quad 20: \mathrm{h}=\ldots \ldots$	$; \quad$ height of the smaller model $=\ldots \quad \mathrm{cm}$
b. $\quad \frac{4000}{S}=\frac{--_{2}^{2}}{{ }^{2}} ; \quad$ surface area of the smaller model $=\ldots \mathrm{cm}^{2}$	

c. $\quad \frac{V}{8000}=\frac{--^{3}}{--^{3}} ; \quad$ volume of the larger model $=$ \qquad cm^{3}

Example 4
A cube measures $4 \mathrm{~cm} \times 4 \mathrm{~cm} \times 4 \mathrm{~cm}$ is dropped into a cylindrical jar of internal radius 5 cm . The original water level is 5 cm . Find the new water level. (Answer correct to 2 decimal places)

Solution
Volume of water displaced $=$ volume of cube $=$ \qquad ${ }^{3}=$ \qquad cm^{3}

Rise in water level = volume of water displaced/cross-sectional area of jar $=64 / \pi(\ldots)^{2}=$ \qquad cm

New water level = \qquad $+$ \qquad $=$ \qquad $=$ \qquad cm (correct to 2 decimal places)

Example 5
A pyramid was built on a rectangular base measuring $20 \mathrm{~m} \times 30 \mathrm{~m}$. The vertical height of the pyramid is 45 m . (a) Find the total area of the slant surfaces.[Hint: find the length of a diagonal of the base.](b) Find the volume of the pyramid. All answers correct to the nearest integer.

Solution

a. Length of a diagonal of the base $=\sqrt{__{-}^{2}+Z_{-}^{2}}=$ \qquad m

$$
\begin{aligned}
& \mathrm{XB}=18.03 \mathrm{~m} \\
& \mathrm{AB}=\mathrm{AC}=\mathrm{AD}=\mathrm{AE}=\sqrt{Q_{-C^{2}}{ }^{+} \square^{2}}=\square \mathrm{m}
\end{aligned}
$$

Total area of the slant surfaces $=2 \Delta A B C+2 \Delta A B E$

$$
\begin{aligned}
& =2\left[\frac{1}{2} \cdot 20\left(\sqrt{--_{--^{2}--_{-}^{2}}}\right)\right]+2\left[\frac{1}{2} \cdot 30\left(\sqrt{--_{-}^{2}-O_{-}^{2}}\right)\right] \\
& + \\
& = \\
& \mathrm{m}^{2}
\end{aligned}
$$

b. Volume of the pyramid $=\frac{1}{3}$ base area x height $=\frac{1}{3}$ \qquad x___) x \qquad $\ldots \mathrm{m}^{3}$
Web Fun Try the quick puzzle $2^{\text {nd }}$ set at http://www.ex.ac.uk/cimt/

