Unit 14 : Mensuration

Objectives

Students should be able to

- identify common plane figures and solids
- find the area of common plane figures
- understand the properties of similar figures
- find the volume of common solids
- to solve miscellaneous problems involving daily applications of mensurations

Mensuration

1. Common plane figures

1.b Square

1.c Rectangle

Area
$$=\frac{1}{2}$$
 base x height
 $=\frac{1}{2}$ b h

 $\mathbf{Area} = (\mathbf{length of a side})^2$

Area =length x breadth

 $= a^2$

= a b

1.e Trapezium Area $=\frac{1}{2}$ (sum of lengths of the parallel sides) x height $=\frac{h}{2}$ (a+b)

Area
$$A = \frac{1}{2}r^2 q$$

Arc length $L = r\theta$

Example: a chinese fan

2. Solids

2.a Cube	
Surface area = $6a^2$	
Volume $= a^3$	a
Example. dice	a
2.b Rectangular cuboid	
Volume $= a b c$	a
Surface area =4ab + 2bc	
Example: mahjong	b c
2.c Prism	
Volume = (Regular cross-sectional area)x Length Surface area = area of 3 rectangular faces + area of 2 triangular faces <i>Example</i> : chocolate bar	
2.d Pyramid on rectangular base	*
Surface area =area of 4 slant faces + area of rectangular base Volume = $\frac{1}{3}$ base area x height <i>Example</i> : pyramids in Egypt	
2.e Sphere	
Surface Area $=4\pi r^2$	
Volume $=$ $\frac{4}{3}\pi r^3$	r
<i>Example</i> : basket balls	

Example 1

A plot of land is in the shape of a semi-		
circle joining a square as shown. The		
length of one side of the square is 20 m.		
(a) Find the total area of the land.	20m	
(b) A circular swimming pool of radius		
5m is to be constructed in this plot and grass		
would be planted in all area surrounding the		
pool. Find the cost of plant grass given the		
cost for plant 1 m^2 of grass is \$12.		

Solution

(a) Total area
$$=\frac{1}{2}\pi r^2 + a^2$$

 $=\frac{1}{2}\pi (\underline{})^2 + \underline{}^2 = \underline{} m^2$
(b) Area of grassland $= \underline{} -\pi (\underline{})^2 = \underline{} m^2$
Cost $=$ \$12* $=$ \$ (rounding up to the nearest dollar)

Example 2

a.Volume of the largest sphere = $\frac{4}{3}\pi r^3 = \frac{4}{3}\pi (__)^3 = ___ cm^3$

b.Volume of water required = internal volume of bottle – volume of sphere = πr^2h – ____ = ___ – ___ = ____ cm³

3. Similar Figures

3.1 Area ratio

If two figures have linear ratio a : b, then the area ratio would be $a^2 : b^2$.

3.2 Volume ratio

If two solids have linear ratio a : b, then the volume ratio would be $a^3 : b^3$.

Example 3

Two similar models have a linear ratio 5 to 2. The height of the larger model is 20 cm.

- a. Find the height of the smaller model.
- b. Find the surface area of the smaller model given the surface area of the larger model is 4000 cm^2 .
- c. Find the volume of the larger model given the volume of the smaller model is 8000 cm^3 .

Solution

a.	$20:h = __: __$;	height of the smaller model=	cm
b.	$\frac{4000}{S} = \frac{2}{2};$	surf	ace area of the smaller model =	_ cm ²

$$\begin{array}{cccc}
& V \\
& 8000 \\
& = -\frac{3}{2}; \\ volume of the larger model = ____ cm^3
\end{array}$$
Example 4

A cube measures 4cm x 4cm x 4cm is
dropped into a cylindrical jar of internal
natius 5cm. The original water level is 5 cm.
Find the new water level i. (Answer correct to
2 decimal places)

Solution
Volume of water displaced = volume of cube = ____3 = ___cm^3

Rise in water level = volume of water displaced/cross-sectional area of jar
=64/\pi (__)^2 = _____cm
New water level = ____ cm
New water level = ____ m_
New water level = ____ cm
New water level = _____ cm
New water level = ______ cm
New water level = ___