Unit 18 : Arithmetic Progression (Sequence)

Learning Objectives

Students should be able to

- state the characteristics of progressions
- find the general term of a given progression
- state the characteristics of an arithmetic progression and in particular the common difference
- find the general term of an arithmetic progression with given information
- define arithmetic means
- insert any number of arithmetic means between two given numbers
- state the properties of series and arithmetic series
- apply the two summation formulae to find the sum, number of terms or some particular terms of an arithmetic series

1. Basic terminology of a progression

- 1.1. Definition and notations
 - A progression is a collection of numbers arranged in a certain order.

Example 1	The following are examples of progressions	
	1, 2, 3, 4, 5, 6,	(S1)
	1, 2, 4, 8, 16, 32,	(S2)
	5, 11, 29, 83, 245,	(S3)
	2, 3, 5, 7, 11, 13, 17, 19, 23, 29,	(S4)
	3, 1, 4, 1, 6, 9, 2, 6, 5, 3,	(S5)

• T(n) represents the n^{th} term. For example, T(1) represents the 1^{st} term, T(2) represents the 2^{nd} term..., T(k) represents the k^{th} term.

Example 2	Refer to example 1
	<i>T</i> (1) of (S1) is <u>1</u>
	T(2) of (S2) is
	<i>T</i> (4) of (S3) is
	T(6) of (S4) is
	$T(\overline{8})$ of (S5) is

• The **general term** of a progression is a formula which enables us to find any term of the progression. T(n) is commonly used as the symbol for the general term.

Example 3	Wi a)	rite down the third term of the progressions defined by $T(n) = 5n + 6$	Explanation
	b)	$T(n) = \frac{n}{n+2}$	
	a)	T(n) = 5n + 6	
		$T(3) = 5(\underline{}) + \underline{} = \underline{} \#$	
	b)	$T(n) = \frac{n}{n+2}$	
		$T(3) = _{+2} = _{\#}$	

(F2)

2. Arithmetic Progression

- 2.1. Definition and Notations:
 - An arithmetic progression is a progression in which *any term minus its previous terms is a constant*. i.e. T(2) T(1) = T(3) T(2) = T(4) T(3) = ... = constant. The definition can be written as
 T(n+1) T(n) = constant
 (F1)
 - *The constant* is called the **common difference**, *d*. d = T(n+1) - T(n)
 - *a* is used to represent the *first term*.

Example 4	Determine which of the following pr	cogressions are	Explanation
		non unterences.	
	a) 2, 7, 12, 17, 22, 27, b) 1 5 10 14 20	(Y) $d = 5$.	$T(3) T(2) \neq T(2) T(1)$
	1 2 3 4		$I(3) - I(2) \neq I(2) - I(1)$
	c) $-\frac{1}{2}, -\frac{1}{3}, -\frac{1}{4}, -\frac{1}{5}, \dots$	(N)	
	d) 4, 7, 10, 13, 17	(N)	$T(5)$ - $T(4) \neq T(2)$ - $T(1)$

2.2. The general term

2.2.1. The form of the general term.

Using the symbols a and d, an arithmetic progression always have the following form:

1 st term	2 nd term	3 rd term	5 th term	10 th term	<i>n</i> th term	$(m+n)^{\text{th}}$ term
а	a+d	a + 2d	a + 4d	a + 9d	a + (n-1)d	a + (m+n-1)d

The general term of any AP can be written as T(n) = a + (n-1)d

(F3)

2.2.2. Simple applications of the general term

Applications: to find	Condition
i. The value of a term $T(n)$	The position of the term, <i>n</i> given
ii. The position of a term <i>n</i>	The value of the term $T(n)$ given
iii. The number of terms in the progression	

2.2.3. How to find the general term and examples of applications.

Logical steps	Steps
(F3) is used to find the general term of an AP.	
Thus two unknowns <i>a</i> and <i>d</i> are to be found and	Find the conditions in the question.
hence two conditions are required	
Use the conditions to find <i>a</i> and <i>d</i>	express the conditions into equations,
	solve the equations
Use (F3)	Subs. <i>a</i> and <i>d</i> into F3 and simplify the
	resulting expression.

Example 5	Gi	ven that $T(7) = 4$ and $T(20) = -35$, find		Explanation
	a)	the general term $T(n)$		
	b)	the ninth term of the progression		App. i
	c)	m if T(m) = -86		App. ii
solution	a)	T(n) = a + (n-1)d	(1)	
		$__ = a + \d$	(2)	
		$-35 = a + \d$	(3)	
		(2)-(3)		
		39= <i>d</i>		
		d=		
		subs. d into (2)		
		4 = a + 6()		
		<i>a</i> =		
		by (1):		
		$T(n) = \underline{\qquad} + (n-1)(\underline{\qquad})$		
		=3#		
	b)	$T(9) = \underline{\qquad} -3(\underline{\qquad}) = \underline{\qquad} \#$		
	c)	-3m = -		
		$___+__=3m$		
		$m = _\\#$		

Example 6	Gi	ven an arithmetic progression 50, 46, 42,, -62, find	Explanation
_	a)	the number of terms that is in the progression.	_
	b)	the smallest positive term.	App. iii
		-	Other app.
Solution	a)	<i>a</i> =	
		$d = _\ 50 = _\$	
		T(n) = a + (n-1)d	
		-62 = 50 - (n-1)	
		$n = \frac{-62 - _}{-_} + 1$	
		=#	
	b)	50 - (n-1) > 0	
		$50 + _\ > \n$	
		> n	
		$n = _$ is the smallest positive term.	
		Value = $50-4(\1)=\{\#}$	

3. Arithmetic means

Definition:

The intermediate terms between two terms of an arithmetic progression are called **arithmetic means** between the two terms.

Unit 15 : Arithmetic Progression Page 4of 6

9/2002

Example 7

Progression	Between	Arithmetic means
2, 3, 4, 5, 6,	2, 6	3, 4, 5
2, 5, 8, 11, 14,	2, 11	;

Insert *n* arithmetic means between *a* and *b*. *a* becomes the 1^{st} term and *b* the $(n+2)^{\text{th}}$ term.

Example 8	Insert 3 arithmetic means between 10 and 20.	Explanation
Solution	$20 = 10 + (\1)d$	20 is the 5 th term.
	<u></u> $d = 10$	
	<i>d</i> =	
	The means are 12.5,,#	

The arithmetic mean of two numbers can be found by the same method. However, a simpler formula exists. Clearly, a, "a number at the middle of a and b", and b form an arithmetic progression. By definition the number is the arithmetic mean of a and b.

arithmetic mean $=\frac{a+b}{2}$	(F4)
nple 9 Find the arithmetic mean of 9 and -1 .	Explanation

Example 9	Find the arithmetic mean of 9 and -1 .	Explanation
Solution	arithmetic mean = $-+(-1)$	
	=#	

4. Arithmetic Series

A series is a sum of term. 2+4+6+8+10+12+14 is a series, 3+7+5+9 is a series. We use the S(n) to represent the sum of *n* term: S(n) = T(1) + T(2) + T(3) + ... + T(n). For an arithmetic progression,

$$S(n) = \frac{n}{2} [2a + (n-1)d]$$
(F5)

if we use ℓ to represent the last term, T(n),

$$S(n) = \frac{n}{2}(a+\ell) \tag{F6}$$

both of the formulae are useful.

Example 10	Fir	nd the sum of the arithmetic series	Explanation
	a)	$100 + 102 + 104 + \dots$ to 20 terms	
	b)	$2 + 6 + 10 + 14 + \ldots + 34$	
Solution	a)	$S(20) = \frac{n}{2} [2a + (n-1)d]$	(F5) can be used directly.
		$=\frac{20}{2}[2(__)+(_\1)_]$	
		=#	

b)	$S(n) = \frac{n}{(\alpha + \beta)}$	(1)	Need to find <i>n</i> first.
	$S(n) = \frac{1}{2}(a+e)$	(1)	Ann iii
	$34 = __+(n-1)(__)$		App. III
	$34 - \underline{\qquad} + \underline{\qquad} = \underline{\qquad} n$		
	By (1):		
	$S(17) = _{2} (+)$		
	=#		

Example 11	2+5+8+11+, is an arithmetic series. Find <i>m</i> if the sum	Explanation
	of the first <i>m</i> terms of the series is 187	
Solution	$S(m) = \frac{m}{2} \left[2a + (m-1)d \right]$	Formula
	$\underline{\qquad} = \frac{m}{2}[2(\underline{\qquad}) + (m-1)(\underline{\qquad})]$	substitution
	$\underline{\qquad}(2) = m(3m-1)$	
	$\underline{\qquad}m^2 + m - \underline{\qquad} = 0$	
	$m = \frac{-1 \pm \sqrt{1^2 - 4(__)(-__)}}{2(__)}$	
	=# (<i>m</i> < 0 is rejected)	