Tutorial

Level 1 questions:

- 1. For a GP, a = 5 and R=3. Write down the first three terms.
- 2. Find the first term of a GP if the 5^{th} term is 32 and the common ratio is 2.
- A man's annual income increases by 10% each year. His income in 1990 was \$72000.
 Find his total earnings from 1990 to 1997 (correct to the nearest dollars).
- 4. Given the geometric series $4 + 12 + 36 + \dots$ If the sum of the first *n* terms of the series is 484, find the value of *n*.

Level 2 questions:

- 5. Given that the 2^{nd} term and the 5^{th} term of a GP are 125 and -8 respectively. Find the common ratio and the 4^{th} term.
- 6. For the geometric series $1 + (-\frac{1}{2}) + \frac{1}{4} + \dots + (-\frac{1}{32})$, find
 - a) the number of terms in the series.
 - b) the sum of the series.

Level 3 questions:

7. The 2nd and 6th term of a geometric progression are ¹/₈ and 4 respectively. Find
a) the common ratio
b) the first term
c) the general term

Solution

- 1. 5, 15, 45
- 2. 2
- 3. 823384 (there are 8 terms)
- 4. 5
- 5. common ratio = -0.4, T(4) = 20
- 6. a) 6 b) $\frac{21}{32}$

7. a)
$$R = 2$$
 or -2
b) For $R = 2$, $a = 2^{-4}$, for $R = -2$, $a = -2^{-4}$
c) For $R = 2$, $T(n) = 2^{-4}(2)^{n-1} = 2^{n-5}{}_{\#}$, for $R = -2$,
 $T(n) = -2^{-4}(-2)^{n-1} = -(-2)^4(-2)^{n-1} = -(-2)^{n-5}{}_{\#}$