Unit 16 : Geometric Progression (Sequence) and Mortgages

Learning Objectives

Students should be able to

- state the characteristics a geometric progression and in particular the common ratio
- find the general term of a geometric progression with given information
- define geometric means
- insert any number of geometric means between two given numbers
- state the properties of geometric series
- apply the summation formula to find the sum, number of terms or some particular terms of a geometric series
- explain the meaning of the sum to infinity of a geometric series
- find the sum to infinity of a geometric series when -1 < R < 1
- Solve mortgage related problems

1 Geometric Progression

1.1 Definition and notations:

A geometric progression is a progression in which the ratio of each term to the preceding term

is a constant. i.e.
$$\frac{T(2)}{T(1)} = \frac{T(3)}{T(2)} = \frac{T(4)}{T(3)} = \dots = \text{constant}$$
 It can be written as
$$\frac{T(n+1)}{T(n)} = \text{constant}$$
(F1)
• The constant is called the **common ratio**, *R*.
$$T(n+1)$$

$$R = \frac{T(n+1)}{T(n)} \tag{F2}$$

• a is used to represent the first term.

Example 1 Determine which of the following progressions are geometric Explanation progressions and find their common ratios.

a) 2, 4, 6, 8, 10,	(N) $R =$
b) 4, 8, 16, 32, 64, 128,	(Y) $R = $
c) 25, 5, 1, $\frac{1}{5}$, $\frac{1}{25}$	$(\mathbf{Y}) R = \frac{1}{2}$
d) 4, -12, 36, -108, 354,	(Y) $R = $

1.2 The general term

Using the symbols a and R, a geometric progression always has the following form:

1 st term	2 nd term	3 rd term	5 th term	10 th term	<i>n</i> th term
а	aR	aR^2	aR^4	aR^9	aR^{n-1}

The general term of any geometric progression can be written as

 $T(n) = aR^{n-1}$

(F3)

1.1.1. Simple applications of the general term

Application: to find	Condition
i. The value of a term $T(n)$	The position of the term, <i>n</i> given
ii. The position of a term <i>n</i>	The value of the term $T(n)$ given
iii. The number of terms in the progression	

1.1.1. How to find the general term and examples of applications.

Logical steps	Steps
(F3) is used to find the general term of a geometric	
progression.	
Thus two unknowns <i>a</i> and <i>R</i> are to be found and	Find the conditions in the question.
hence two conditions are required	
Use the conditions to find <i>a</i> and <i>R</i>	express the conditions into equations,
	solve the equations
Use (F3)	Subs. <i>a</i> and <i>R</i> into F3 and simplify the
	resulting expression.

Example 2	Α	geometric progression is given as follows 5, 20, 80,, find	Explanation
-	a)	The general term $T(n)$	-
	b)	The seventh term	App. i
		$m ext{ if } T(m) = 1280$	App. ii
solution	a)	$R = \frac{T(2)}{T(1)} = \frac{1}{5} = \underline{\qquad}$ $T(n) = aR^{n-1}$ $= \underline{\qquad}^{n-1}_{\#}:$	
		$T(n) = aR^{n-1}$	
		$= \underline{()}^{n-1} \underline{\#}$	
	b)	$T(7) = 5(\underline{})^{1}$	
		=#	
	c)	$5(4)^{n-1} = 1280$	
		$(4)^{n-1} = 256$	
		$= \underline{\qquad}_{\#}$ $5(4)^{n-1} = 1280$ $(4)^{n-1} = 256$ $n-1 = \frac{\log 256}{\log 4}$	
		$n = 5_{\#}$	

Although the procedure of finding the general term of a geometric progression is exactly the same as that of an arithmetic progression, there is a major difference in the actual calculation:

• Given any two terms of an AP, only one general term may be found, but given any two terms of a GP, two general terms may be found. The following example shows the case clearly.

Example 3	The 3 rd and 7 th term of a geometric progression are $\frac{1}{4}$ and 4	Explanation
	respectively. Find	two general
	a) the common ratio	terms and only
	b) the first term	one a.
	c) the general term	
solution	a) $T(n) = aR^{n-1}$ (1)	
	$aR^2 = \frac{1}{2} \tag{2}$	
	$aR^6 = _ \tag{3}$	
	$(2) \div (1)$:	
	$R^4 = _$	
	<u>1</u>	
	$R = \pm (_)^{\frac{1}{4}}$	
	= or#	
	b) Subs. R into (2):	
	For $R = 2$	
	$a(_)^2 = \frac{1}{-1}$	
	$a = \{\#}$	
	For $R = -2$	
	$a(-_)^2 = -\frac{1}{2}$	
	$a(-_)^2 =$	
	$a = \{-4}^{-4}$ #	
	c) By (1): For $R = 2$	
	$T(n) = 2^{-4} (_)^{n-1} = _^{n-5}_{m+1} #$	
	For $R = -2$	
	$T(n) = 2^{-4} (-_)^{n-1} = (-_)^{n-5} \#$	

2 Geometric means

Definition:

The intermediate terms between two terms of a geometric progression are called geometric **means** between the two terms.

Example 4

Progression	Between	geometric means
2, 4, 8, 16, 32,	2, 32	4, 8, 16
1, -3, 9, -27, 81,	1, -27	-3, 9
4, 16, 64, 256, 1024,	4, 1024	16, 64, 256

Insert *n* geometric means between *a* and *b*. *a* becomes the <u>1st</u> term and *b* the $(\underline{n+2})^{th}$ term.

Example 5	Insert 3 geometric means between 10 and 160.	Explanation
Solution	$T(n) = aR^{n-1}$	160 is the 5^{th} term.
	$__ = \R^4$	
	$R = \pm \left(\underbrace{=}_{=} \right)^{\frac{1}{4}}$	
	= or –	
	For $R = 2$, the geometric means are, and#	
	For $R = -2$, the geometric means are, and#	

The geometric mean of two numbers can be found by the same method. Again, a simpler formula exists. If a, b, c are three consecutive terms in a geometric progression, then b is the geometric mean of a and c. By the definition of (F2)

geometric mean =
$$\pm \sqrt{ac}$$
 (F4)

For example, the geometric mean of 2 and 72 are 12 or -12

3 Geometric Series

For a geometric progression, the series $T(1) + T(2) + T(3) + \dots + T(n)$ is given by

$$S(n) = \frac{a(1-R^n)}{1-R} = \frac{a(R^n - 1)}{R-1}$$
(F5)

Example 6	 Find the sum of the geometric series Find the sum of the geometric series a) 2+4+8+to 10 terms b) 3+12+48+192++12288 	Explanation
Solution	a) $S(n) = \frac{a(R^n - 1)}{R - 1}$ $S(10) = \frac{2(_^{10} - 1)}{_^{-1}}$ $= \{\#}$	

В	$T(n) = aR^{n-1}$
	$\underline{\qquad} = 3(\underline{\qquad})^{n-1}$
	$n-1 = \frac{\log\left(\frac{1}{2}\right)}{\log_{-1}}$
	=
	n =
	$S(7) = \frac{3(-7^{7}-1)}{-1}$
	=#

GP is very often used in daily life. "Annuity Due" is an example.

Example 7	\$10000 is deposited in a bank on the first day of each month for 4 years and the interest rate is 8% per annum. Find the total amount accumulated at the end of the fourth year. (correct to the nearest dollar)	Explanation
Solution	$A = 1000(1 + \frac{12}{12}) + \frac{(1 + \frac{12}{12})^{47}}{12}$ + 1000(1 + $\frac{12}{12}$)^{46} + + $\frac{12}{12}$) = $\frac{1000(1 + \frac{0.08}{12})((1 + \frac{12}{12})^{48} - 1)}{(1 + \frac{12}{12}) - 1}$ = \$#	Amount = contribution from 1 st month + contribution from 2 nd month + + contribution from 48 th month interest rate = 8% =0.08 Number of terms =48

Mortgage is another example that is related to GP

00	1	
Example 8	Johm borrows one million from a bank. x is paid to	Explanation
	the bank on the last day of each month. His debt will	
	be over after 4 years if the interest rate is 6% per	
	annum. Find the amount value of <i>x</i> .	
Solution	$1000000(1+0.005)^{48} = x(1+0.005)^{47} + x(1+0.005)^{46}$	Debt = money saved.
		Number of terms =48
	$+x(1+0.005)^{45}++x$	
	$=\frac{x[(1+0.005)^{48}-1]}{(1+0.005)^{48}-1]}$	
	$x = ___#$	

2. Sum to infinity of a Geometric Series

Here is another distinction between arithmetic progressions and geometric progressions:

usually we cannot sum infinite terms for any arithmetic progression (why?) However, it may be done for some geometric progressions. By (F5)

$$S(n) = \frac{a(1-R^n)}{1-R}$$

If -1 < R < 1, when *n* is large, \mathbb{R}^n is close to zero. As $n \to \infty$, $\mathbb{R}^n \to 0$. The **sum to infinity** of the geometric series $S(\infty)$ is given by

$$S(\infty) = \frac{a}{1-R}$$
 (-1 < R < 1) (F6)

I- <i>K</i>		
Find the sum to infinity of the geometric series		Explanation
12 ·	$12 + 4 + \frac{4}{3} + \frac{4}{9} + \frac{4}{27} + \dots$	
a)	$S(\infty) = \frac{a}{1-R} $ (1) $R = \underbrace{=}_{n=1} = \frac{1}{n}$ subs. \overline{R} into (1): $S(\infty) = \underbrace{=}_{n=1} = \frac{1}{1-\frac{1}{n}}$ $= \underbrace{=}_{n=1} = \frac{1}{n}$	
	12	Find the sum to infinity of the geometric series $12+4+\frac{4}{3}+\frac{4}{9}+\frac{4}{27}+$ a) $S(\infty) = \frac{a}{1-R}$ (1) $R = \underbrace{=}_{\text{subs. } R \text{ into } (1):}$