Unit 16 : Geometric Progression (Sequence) and Mortgages

Learning Objectives

Students should be able to

- state the characteristics a geometric progression and in particular the common ratio
- find the general term of a geometric progression with given information
- define geometric means
- insert any number of geometric means between two given numbers
- state the properties of geometric series
- apply the summation formula to find the sum, number of terms or some particular terms of a geometric series
- explain the meaning of the sum to infinity of a geometric series
- find the sum to infinity of a geometric series when $-1<R<1$
- Solve mortgage related problems

1 Geometric Progression

1.1 Definition and notations:

A geometric progression is a progression in which the ratio of each term to the preceding term is a constant. i.e. $\frac{T(2)}{T(1)}=\frac{T(3)}{T(2)}=\frac{T(4)}{T(3)}=\ldots=$ constant . It can be written as

$$
\begin{equation*}
\frac{T(n+1)}{T(n)}=\text { constant } \tag{F1}
\end{equation*}
$$

- The constant is called the common ratio, R.

$$
\begin{equation*}
R=\frac{T(n+1)}{T(n)} \tag{F2}
\end{equation*}
$$

- $\quad a$ is used to represent the first term.

Example 1 Determine which of the following progressions are geometric Explanation progressions and find their common ratios.
a) $2,4,6,8,10, \ldots$
(N) $R=$
b) $4,8,16,32,64,128, \ldots$
(Y) $R=$
c) $25,5,1, \frac{1}{5}, \frac{1}{25}$
(Y) $R=\frac{1}{-}$
d) $4,-12,36,-108,354, \ldots$
(Y) $R=$

1.2 The general term

Using the symbols a and R, a geometric progression always has the following form:

$1^{\text {st }}$ term	$2^{\text {nd }}$ term	$3^{\text {rd }}$ term	$5^{\text {th }}$ term	$10^{\text {th }}$ term	$n^{\text {th }}$ term
a	$a R$	$a R^{2}$	$a R^{4}$	$a R^{9}$	$a R^{\text {n-1 }}$

The general term of any geometric progression can be written as

$$
\begin{equation*}
T(n)=a R^{n-1} \tag{F3}
\end{equation*}
$$

1.1.1. Simple applications of the general term

Application: to find	Condition
i. The value of a term $T(n)$	The position of the term, n given
ii. The position of a term n	
iii. The number of terms in the progression	The value of the term $T(n)$ given

1.1.1. How to find the general term and examples of applications.

Logical steps	Steps
(F3) is used to find the general term of a geometric progression.	
Thus two unknowns a and R are to be found and hence two conditions are required	Find the conditions in the question.
Use the conditions to find a and R	express the conditions into equations, solve the equations
Use (F3)	Subs. a and R into F3 and simplify the resulting expression.

Example 2	A geometric progression is given as follows 5, 20, 80, .., find a) The general term $\mathrm{T}(n)$ b) The seventh term c) m if $T(m)=1280$		Explanation App. i App. ii
solution	a)	$\begin{aligned} & R=\frac{T(2)}{T(1)}=\frac{\overline{5}}{=}=\ldots \\ & T(n)=a R^{n-1} \\ & \quad=\ldots(-\ldots)_{\#}^{n-1}: \end{aligned}$	
	b)	$\begin{aligned} T(7) & =5(\ldots)^{--^{-1}} \\ & =\ldots \ldots \# \end{aligned}$	
	c)	$\begin{aligned} 5(4)^{n-1} & =1280 \\ (4)^{n-1} & =256 \\ n-1 & =\frac{\log 256}{\log 4} \\ n & =5_{\#} \end{aligned}$	

Although the procedure of finding the general term of a geometric progression is exactly the same as that of an arithmetic progression, there is a major difference in the actual calculation:

- Given any two terms of an AP, only one general term may be found, but given any two terms of a GP, two general terms may be found.
The following example shows the case clearly.

Example 3	The $3^{\text {rd }}$ and $7^{\text {th }}$ term of a geometric progression are $\frac{1}{4}$ and 4 respectively. Find a) the common ratio b) the first term c) the general term			Explanation two general terms and only one a.
solution	a)	$\begin{aligned} & T(n)=a R^{n-1} \\ & a R^{2}=\frac{1}{-} \\ & a R^{6}=- \\ & (2) \div(1): \\ & R^{4}=- \\ & R= \pm(\ldots)^{\frac{1}{4}} \\ & \\ & =\text { _ or }_{\ldots-\#} \end{aligned}$	(1) (2) (3)	
	b)	Subs. R into (2): For $R=2$ $\begin{aligned} & a\left(_\right)^{2}=\frac{1}{-} \\ & a=-\overline{\#} \\ & \text { For } R=-2 \\ & a(-\ldots)^{2}=\frac{1}{-} \\ & a=Z_{\square}^{-4} \# \end{aligned}$		
	c)	By (1): For $R=2$ $T(n)=2^{-4}\left(_\right)^{n-1}=_^{n-5} \#$ For $R=-2$ $T(n)=2^{-4}(-\ldots)^{n-1}=(-\ldots)^{n-5} \#$		

2 Geometric means

Definition:

The intermediate terms between two terms of a geometric progression are called geometric means between the two terms.

Example 4

Progression	Between	geometric means
$2,4,8,16,32, \ldots$	2,32	$4,8,16$
$1,-3,9,-27,81, \ldots$	$1,-27$	$-3,9$
$4,16,64,256,1024, \ldots$	4,1024	$16,64,256$

Insert n geometric means between a and $b . a$ becomes the \qquad term and b the $(n+2)^{\text {th }}$ term.

Example 5	Insert 3 geometric means between 10 and 160.	Explanation
Solution	$\begin{aligned} & T(n)=a R^{n-1} \\ & -=\ldots R^{4} \\ & R= \pm\left(\overline{Z_{2}}\right)^{\frac{1}{4}} \\ & =\ldots \text { or }-\ldots \end{aligned}$ For $R=2$, the geometric means are \qquad and \qquad - For $R=-2$, the geometric means are - \qquad and - \qquad	160 is the $5^{\text {th }}$ term.

The geometric mean of two numbers can be found by the same method. Again, a simpler formula exists. If a, b, c are three consecutive terms in a geometric progression, then b is the geometric mean of a and c. By the definition of (F2)

$$
\begin{equation*}
\text { geometric mean }= \pm \sqrt{a c} \tag{F4}
\end{equation*}
$$

For example, the geometric mean of 2 and 72 are 12 or -12

3 Geometric Series

For a geometric progression, the series $T(1)+T(2)+T(3)+\cdots+T(n)$ is given by

$$
\begin{equation*}
S(n)=\frac{a\left(1-R^{n}\right)}{1-R}=\frac{a\left(R^{n}-1\right)}{R-1} \tag{F5}
\end{equation*}
$$

Example 6	Find the sum of the geometric series Find the sum of the geometric series a) $2+4+8+\ldots$ to 10 terms b) $3+12+48+192+\ldots+12288$	Explanation
Solution	a)	$S(n)=\frac{a\left(R^{n}-1\right)}{R-1}$ $S(10)=\frac{2\left(_^{10}-1\right)}{-1}$ $=\ldots \ldots$

	B	$\begin{aligned} T(n) & =a R^{n-1} \\ & =3\left(_\right)^{n-1} \\ n-1 & =\frac{\log (\overline{\bar{L}})}{\log } \\ & =- \\ n & =- \\ S(7) & =\frac{3\left(_^{7}-1\right)}{-1} \\ & = \end{aligned}$	

GP is very often used in daily life. "Annuity Due" is an example.

Example 7	$\$ 10000$ is deposited in a bank on the first day of each month for 4 years and the interest rate is 8% per annum. Find the total amount accumulated at the end of the fourth year. (correct to the nearest dollar)	Explanation
Solution	$\begin{aligned} & A=1000(1+\overline{\overline{12}}) \ldots^{+} \ldots(1+\overline{\overline{12}})^{47} \\ & \left.+1000(1+\overline{\overline{12}})^{46}+\cdots+\ldots++\overline{12}\right) \\ & =\frac{1000\left(1+\frac{0.08}{12}\right)\left((1+\overline{\overline{12}})^{48}-1\right)}{(1+\overline{12})-1} \\ & =\$ \end{aligned}$	Amount $=$ contribution from $1^{\text {st }}$ month + contribution from $2^{\text {nd }}$ month $+\ldots$ + contribution from $48^{\text {th }}$ month interest rate $=8 \%=0.08$ Number of terms $=48$

Mortgage is another example that is related to GP

Example 8	Johm borrows one million from a bank. \$ x is paid to the bank on the last day of each month. His debt will be over after 4 years if the interest rate is 6% per annum. Find the amount value of x. Explanation Solution $1000000(1+0.005)^{48}=x(1+0.005)^{47}+x(1+0.005)^{46}$ $+x(1+0.005)^{45}+\ldots+x$ $=\frac{x\left[(1+0.005)^{48}-1\right]}{(1+0.005)-1}$	Debt = money saved. Number of terms $=48$
$x=\ldots \ldots \#$		

2. Sum to infinity of a Geometric Series

Here is another distinction between arithmetic progressions and geometric progressions:
usually we cannot sum infinite terms for any arithmetic progression (why?) However, it may be done for some geometric progressions. By (F5)

$$
S(n)=\frac{a\left(1-R^{n}\right)}{1-R}
$$

If $-1<R<1$, when n is large, R^{n} is close to zero. As $n \rightarrow \infty, R^{n} \rightarrow 0$.
The sum to infinity of the geometric series $S(\infty)$ is given by

$$
\begin{equation*}
S(\infty)=\frac{a}{1-R} \quad(-1<R<1) \tag{F6}
\end{equation*}
$$

Example 9		the sum to infinity of the geometric series $+4+\frac{4}{3}+\frac{4}{9}+\frac{4}{27}+\ldots$	Explanation
Solution	a)	$\begin{align*} & S(\infty)=\frac{a}{1-R} \tag{1}\\ & R===-1 \end{align*}$ subs. \bar{R} into $\overline{(1)}$: $\begin{aligned} S(\infty) & =\frac{\overline{1}}{1-\frac{1}{\square}} \\ & = \end{aligned}$	

