Unit 21 : Rectangular Coordinates, Distance Formula ,Section Formula and Equation of Straight Line

Learning Objectives

Students should be able to:

- Locate a point in a plane using rectangular coordinate system
- Calculate the distance between 2 points
- Determine the point of division of a line segment
- Determine the slope of a line
- State the condition for 2 lines to be parallel or perpendicular
- Understand that the equation of a straight line is of the first degree
- Determines the equation of a straight line
- Determines the slope and intercepts of a straight line
- Sketch a line when its equation is given

1. Review of coordinates

The coordinates of a point P referred to the perpendicular axes are the ordered pair (a, b) where
$\mathrm{a}($ the x -coordinate $)=$ the distance of P from the y -axis; and
b (the y-coordinate $)=$ the distance of P from the x-axis.

Example 1: Plot the points $\mathrm{A}(1,2), \mathrm{B}(4,6)$ and $\mathrm{C}(4,2)$; hence find the distances between:
a) A and C;
b) B and C;
c) A and B.

Soln:

From the figure,
a) $\mathrm{AC}=4-1=3$
b) $\mathrm{BC}=6-2=4$
c) By Pythagoras theorem, $\mathrm{AB}=\sqrt{A C^{2}+B C^{2}}$

$$
\begin{aligned}
& =\sqrt{3^{2}+4^{2}} \\
& =5 \text { units }
\end{aligned}
$$

2. Distance formula

Now let us generalize Examples 1 and 2 by finding the distance between the points $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$.

From the figure, $\quad C=\left(x_{2}, y_{1}\right)$

$$
\mathrm{AC}=\mathrm{x}_{2}-\mathrm{x}_{1}
$$

$$
\mathrm{BC}=\mathrm{y}_{2}-\mathrm{y}_{1}
$$

By Pythagoras theorem, $\mathrm{AB}=\sqrt{A C^{2}+B C^{2}}$

$$
=\sqrt{\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}}
$$

Example 2: Find the distances between the pairs of points:
a) $(3,4)$ and $(15,9)$;
b) $(5,1)$ and $(-3,-4)$;

Soln: a) $\sqrt{12^{2}+5^{2}}=13$ units
b) $\sqrt{(-8)^{2}+(-5)^{2}}=\sqrt{89}$ units
3. Section formula

A point P on the joining of $A B$ is said to divide $A B$ in the ratio $r_{1}: r_{2}$ if $A P: P B=r_{1}: r_{2}$. In the figure below, if P divides $A B$ in the ratio $r_{1}: r_{2}$

then $\frac{A P}{P B}=\frac{A M}{P N}=\frac{M P}{N B}=\frac{r_{1}}{r_{2}}$
i.e. $\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{r_{1}}{r_{2}}$
hence $\quad x=\frac{r_{1} x_{2}+r_{2} x_{1}}{r_{1}+r_{2}}$
Similarly, $\quad y=\frac{r_{1} y_{2}+r_{2} y_{1}}{r_{1}+r_{2}}$
Hence, the section formula concludes that:
The coordinates of the point P which divides the joining of $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is

$$
\mathrm{x}=\frac{\mathrm{r}_{1} \mathrm{x}_{2}+\mathrm{r}_{2} \mathrm{x}_{1}}{\mathrm{r}_{1}+\mathrm{r}_{2}} \text { and } y=\frac{r_{1} y_{2}+r_{2} y_{1}}{r_{1}+r_{2}}
$$

Example 3: Write down the mid-points of the lines joining:
a) $(1,1)$ and $(5,4)$;
b) $(6,1)$ and $(-8,3)$;

Soln: a) $(3,5 / 2)$
b) $(-1,2)$

Example 4: Given $\mathrm{A}=(4,16)$ and $\mathrm{B}=(11,-5)$, find H if H divides AB internally in the ratio 1:6

Soln: $(5,13)$
4. Inclination and slope of a line

The inclination of a line is the angle made between the line and the positive xaxis.
The slope of a line is defined as the tangent of the inclination of the line.
i.e. $m=\tan \alpha$

Example 5: Find the slopes of the lines with inclinations:
a) $\alpha=30^{\circ}$;
b) $\alpha=45^{\circ}$;
c) $\alpha=135^{\circ}$.

What conclusion can you make if the two lines are perpendicular?
Soln: (a) $\mathrm{m}=\tan 30^{\circ}=0.5771$
(b) $\mathrm{m}=\tan 45^{\circ}=1$
(c) $\mathrm{m}=\tan 135^{\circ}=-1$
from (b) and (c), $\mathbf{m}_{1} \mathbf{m}_{\mathbf{2}}=\mathbf{- 1}$ and these two lines are perpendicular.
In general,
(i) if $L_{1} / / L_{2}$ then $\mathbf{m}_{1}=\mathbf{m}_{\mathbf{2}}$;
(ii) if $L_{1} \perp L_{2}$ then $\mathbf{m}_{\mathbf{1}} \mathbf{m}_{\mathbf{2}}=\mathbf{- 1}$.

5. Slope of the line passing through two points

From the above figure, slope of the line passing through the points A and B is

$$
\begin{aligned}
\mathrm{m} & =\tan \alpha \\
& =\frac{B M}{A M} \\
\mathrm{~m} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
\end{aligned}
$$

Example 6: Find the slopes of the lines passing through:
a) $(5,2)$ and $(-2,2)$;
b) $(5,1)$ and $(-3,-4)$;
c) $(1,2)$ and $(-1,4)$;
d) $(4,7)$ and $(4,1)$.

Soln: a) 0
b) $5 / 8$
c) -1
d) undefined.

Example $7 \quad \mathrm{~A}$ and B are the points $(-4,1)$ and $(8,6)$ respectively.
(a) Find the slope of AB .
(b) Find the length of AB .
(c) Write down the coordinates of the mid-point of AB .

Soln: (a) \quad slope $m=\frac{6-1}{8-(-4)}=\frac{5}{12}$
(b) length of $\mathrm{AB}=\sqrt{(8-(-4))^{2}+(6-1)^{2}}$

$$
=\sqrt{12^{2}+5^{2}}=13 \text { units }
$$

(c) coordinates of mid-point $=\left(\frac{-4+8}{2}, \frac{1+6}{2}\right)=\left(2, \frac{7}{2}\right)$

6. Equation of the straight line

For every point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ to lie on a straight line, its coordinates x and y must satisfy a certain relation. This relation is called the equation of the straight line.

For example, to find the equation of the line of slope 2 and through the point $\mathrm{A}(2,1)$ is to find the connection such that every point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ on the line should satisfy, i.e. \quad slope of $\mathrm{PA}=$ given slope 2

$$
\begin{equation*}
\frac{y-1}{x-2}=2 \tag{*}
\end{equation*}
$$

or $\quad 2 x-y=3$

Hence, in order that $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be a point on the line, its coordinates x and y must satisfy $(*)$, and $(*)$ is called the equation of the line.

In fact, the equations of straight lines are of $1^{\text {st }}$ degree, and equations in x, y of $1^{\text {st }}$ degree are called linear equations.

7. Point-slope form

We have already found in the last section that the line through the point $\left(\mathbf{x}_{1}, \mathbf{y}_{\mathbf{1}}\right)$ of slope m is:

$$
\frac{y-y_{1}}{x-x_{1}}=m
$$

Example 8: Find the equations of lines through the following given point $(1,-2)$ and with slopes -1 .

Solution: \quad The equation of the line through $(1,-2)$ with slope $=-1$ is :

$$
\begin{aligned}
& \frac{y+2}{x-1}=-1 \\
& x+y+1=0
\end{aligned}
$$

8. Two points form

From our last section, the line through $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and of slope m is

$$
\frac{y-y_{1}}{x-x_{1}}=m
$$

If the line also passes through $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$, its slope is $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.
Therefore, the equation of the line joining ($\mathbf{x}_{1}, \mathbf{y}_{1}$) and ($\mathbf{x}_{2}, \mathbf{y}_{2}$) is

$$
\frac{y-y_{1}}{x-x_{1}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Example 9: Find the equation of the line joining $(4,1)$ to $(5,-2)$.

Soln: The equation is:

$$
\begin{aligned}
\frac{y-1}{x-4} & =\frac{-2-1}{5-4} \\
\text { or } \quad 3 x+y & =13 .
\end{aligned}
$$

Example 10: Find the equation of the line which makes x-intercept 5 and $y-$ intercept 2 on the axes.

Solution

As the line makes y -intercept 2 and x -intercept 5
From the figure, $\mathrm{A}=(0,2)$ and $\mathrm{B}=(5,0)$
The equation of the line is $\frac{y-2}{x-0}=\frac{0-2}{5-0} \quad$ or $\quad 2 x+5 y=10$

Example 11: Find the equation of the line passing through $(2,3)$ and is parallel to the line $3 x+4 y=12$.
Soln: When $\mathrm{x}=0, \mathrm{y}=3$

When $y=0, x=4$
The line $3 x+4 y=12$ passes through $(0,3)$ and $(4,0)$
and its slope is $\mathrm{m}=\frac{0-3}{4-0}=\frac{-3}{4}$
Equation of the line is: $\quad \frac{y-3}{x-2}=\frac{-3}{4}$
Or $\quad 3 \mathrm{x}+4 \mathrm{y}=18$.

9. Slope-intercept form

The equation of the line with slope \mathbf{m} and \mathbf{y}-intercept \mathbf{b} is the line through $(0, b)$, so its equation is:

$$
\frac{y-b}{x-0}=m \quad \text { or }
$$

$$
\mathrm{y}=\mathrm{mx}+\mathrm{b} .
$$

By writing the equation of a line into this form, we can read the slope m of the line easily.

Example 12: Find the slope of each of the line $3 x+4 y=10$.
Soln: $4 y=-3 x+10$

$$
y=\frac{-3}{4} x+10 \text { gives slope } m=\frac{-3}{4}
$$

Example 13: Find the equation of the line through $(5,7)$ and is perpendicular to another line $3 x+2 y-7=0$.

Soln: As $3 x+2 y-7=0$

$$
y=\frac{-3}{2} x+7
$$

It's slope $m=\frac{-3}{2}$
Hence equation of the line is $\quad \frac{y-7}{x-5}=\frac{2}{3}$
or $\quad 2 x-3 y+11=0$

