FOUNDATION DIPLOMA/CERTIFICATE
 Assignment I (02/03)

Module Title	$:$	Foundation Mathematics
Module Code	$:$	CMV6111
Hand out	$:$	Week 14
Hand in	$:$	Week 16

Section A
Multiple Choice
(20 marks)
Answer ALL questions in this section.. Each question carries 4 marks.

1. If $\frac{5 x+2 y}{x+2 y}=3$, express x in terms of y.
a. $x=2 y$
b. $x=-2 y$
c. $x=3 y$
d. $x=-3 y$
2. In the figure, AB is a diameter. Find θ.
A. 20°
B. 30°
C. 40°
D. 60°

3. $a^{4}-y^{4}=$
A. $(a+y)(a-y)\left(a^{2}-y^{2}\right)$
B. $(a-y)(a+y)\left(a^{2}+y^{2}\right)$
C. $(a+2 y)(a-2 y)\left(a^{2}-y^{2}\right)$
D. $\left(a^{2}+y^{2}\right)\left(a^{2}-2 a y-y^{2}\right)$
4. $\quad x^{2}-3 x-18$ equals
A. $(x+2)(x-9)$
B. $(x-2)(x+9)$
C. $(x+3)(x-6)$
D. $(x-3)(x+6)$
5. If $a: b=2: 3$ and $c: a=3: 1$, then $a: b$: c equals
A. $2: 3: 1$
B. $3: 3: 1$
C. $6: 3: 2$
D. $2: 3: 6$

Answer ALL questions in this section. Each question carries 10 marks.
6. (a) Factorize $x^{2}-9 x-36$.
(b) Hence, factorize $y^{4}-9 y^{2}-36$.
7. Solve the simultaneous equations:

$$
\left\{\begin{array}{c}
2 x-y=5 \\
x^{2}+x y=2
\end{array}\right.
$$

(10 marks)
8. In figure $1, \mathrm{AB}$ is a diameter of the circle and $\mathrm{A}, \mathrm{B} \mathrm{C}, \mathrm{D}$ and E are points on the circumference of the circle. Given $\angle \mathrm{CAB}=33^{\circ}$,
(a) find $\angle \mathrm{ABC}$
(4 marks)
(b) find $\angle \mathrm{ADC}$
(4 marks)
(c) find $\angle \mathrm{AEC}$
(2 marks)

9. Solve the following inequalities:
(a) $\frac{2 \mathrm{x}+1}{3}>1-\mathrm{x}$ (4 marks)
(b) $2 x^{2}-7 x>-6$
(6 marks)

Answer All questions in this section. Each question carries 20 marks.
10. Given $10 x^{2}+4 x+1=2 \mathrm{a} x(2-x)$
(a) Find the range of values of a for which the equation has real roots.
(b) Find the values of a for which the equation has repeated (equal) roots.
(c) Find the range of values of a for which the equation has no real roots.
11. The unit cost of a lunch box is partly constant and partly varies inversely as the number of people buying lunch boxes. The unit cost is $\$ 15$ when 100 people buy lunch boxes and the unit cost is $\$ 25.50$ when the number of people becomes 50 .
(a) Find a mathematical formula connecting the unit cost of a lunch box and the number of people buying lunch boxes.
(b) Calculate the unit cost of a lunch box when the number of people become 200.
(c) Calculate the minimum number of people buying lunch boxes when the unit cost is $\$ 13$.
1.A 2.B 3.B 4.C 5.D
6. (a) $\mathrm{x}^{2}-9 \mathrm{x}-36=(\mathrm{x}-12)(\mathrm{x}+3)$
(b) Let $y^{2}=x$,

$$
\begin{aligned}
y^{4}-9 y^{2}-36 & =x^{2}-9 x-36 \\
& =(x-12)(x+3)
\end{aligned}
$$

Substitute $y^{2}=x$,

$$
y^{4}-9 y^{2}-36=\left(y^{2}-12\right)\left(y^{2}+3\right)
$$

7. $2 x-y=5 \Rightarrow y=2 x-5$

Substitute into $x^{2}+x y=2$

$$
x^{2}+\left(2 x^{2}-5 x\right)=2
$$

$$
3 x^{2}-5 x-2=0
$$

$$
(x-2)(3 x+1)=0
$$

$$
\mathrm{x}=2 \text { or } \mathrm{x}=-\frac{1}{3}
$$

$$
x=2, \quad y=-1 \quad \text { or } \quad x=-\frac{1}{3}, \quad y=-\frac{17}{3}
$$

8.

(a) $\angle \mathrm{ACB}=90^{\circ}$
$\angle \mathrm{ABC}+90^{\circ}+33^{\circ}=180^{\circ}$ $\angle \mathrm{ABC}=57^{\circ}$
(b) $\angle \mathrm{ADC}+\angle \mathrm{ABC}=180^{\circ}$
$\angle \mathrm{ADC}=123^{\circ}$
(c) $\angle \mathrm{AEC}=\angle \mathrm{ADC}=123^{\circ}$
9. (a) From $\frac{2 x+1}{3}>1-x$

$$
2 x+1>3-3 x
$$

$$
\mathrm{x}>0.4
$$

(b) From $2 x^{2}-7 x>-6$

$$
2 x^{2}-7 x+6>0
$$

$$
(2 x-3)(x-2)>0
$$

$$
\mathrm{x}>2 \text { or } \mathrm{x}<1.5
$$

10. (a) Equation is $(10+2 \mathrm{a}) x^{2}+(44 \mathrm{a}) x+1=0$, discriminant $=4^{2}(1-a)^{2}-4.2(a+5)$

$$
=8(2 a+1)(a-3)
$$

For real roots, discrininant ? 0

$$
a ? 3 \text { or } a ?-1 / 2
$$

(b) For equal roots, discriminant $=0$
$\mathrm{a}=3$ or $-1 / 2$
(c) For no real roots, discrininant <0
$-1 / 2<a<3$
7. (a) Let $\mathrm{c}=$ unit cost; $\mathrm{n}=$ number of people; $\mathrm{a}=$ constant; $\mathrm{k}=$ proportionality constant Hence, $\mathrm{c}=\mathrm{a}+\frac{\mathrm{k}}{\mathrm{n}}$; from data $15=\mathrm{a}+\frac{\mathrm{k}}{100} \ldots(1)$ and $25.5=\mathrm{a}+\frac{\mathrm{k}}{50} \ldots$ (2)
Solving, $\mathrm{k}=1050$ and $\mathrm{a}=4.5$
(b) From $\mathrm{c}=4.5+\frac{1050}{\mathrm{n}}$ and $\mathrm{n}=200$, unit cost $=\$ 9.75$
(c) From $\mathrm{c}=4.5+\frac{1050}{\mathrm{n}}$ and $\mathrm{c}=13$, minimum number is 124

