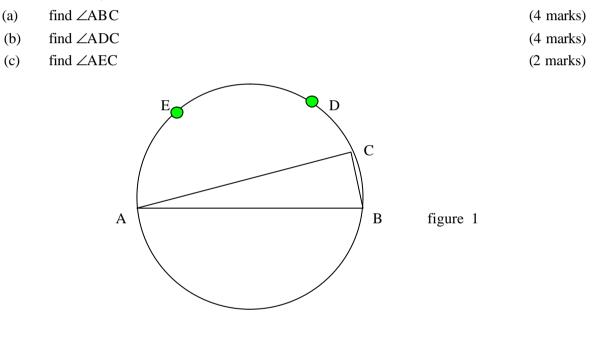
## FOUNDATION DIPLOMA/CERTIFICATE Assignment I (02/03)

| Module Title | : | Foundation Mathematics |
|--------------|---|------------------------|
| Module Code  | : | CMV6111                |
| Hand out     | : | Week 14                |
| Hand in      | : | Week 16                |
|              |   |                        |

| Section A                                                            | Multiple Choice                                                    | (20 marks) |  |  |
|----------------------------------------------------------------------|--------------------------------------------------------------------|------------|--|--|
| Answer ALL questions in this section. Each question carries 4 marks. |                                                                    |            |  |  |
| 1. If $\frac{5x+2}{x+2}$                                             | $\frac{2y}{2y} = 3$ , express x in terms of y.                     |            |  |  |
| a. x =                                                               | 2у                                                                 |            |  |  |
| b. x =                                                               | -2y                                                                |            |  |  |
| c. x =                                                               | Зу                                                                 |            |  |  |
| d. x=-                                                               | -3y                                                                |            |  |  |
| 2. In the fig                                                        | gure, AB is a diameter. Find $\theta$ .                            |            |  |  |
|                                                                      |                                                                    |            |  |  |
| A. 20°                                                               |                                                                    | 120°       |  |  |
| B. 30°                                                               |                                                                    | Τθ         |  |  |
| C. 40°                                                               | A                                                                  | / B        |  |  |
| D. 60°                                                               |                                                                    |            |  |  |
| 3. $a^4 - y^4 =$                                                     | :                                                                  |            |  |  |
| •                                                                    | $(-y)(a-y)(a^2-y^2)$                                               |            |  |  |
|                                                                      | $y)(a+y)(a^2+y^2)$                                                 |            |  |  |
| C. (a +                                                              | $(-2y)(a-2y)(a^2-y^2)$                                             |            |  |  |
| D. $(a^2 +$                                                          | $(y^2)(a^2 - 2ay y^2)$                                             |            |  |  |
| 4. $x^2 - 3x - 3$                      | - 18 equals                                                        |            |  |  |
| A. (x +                                                              | - 2)(x - 9)                                                        |            |  |  |
| B. (x -                                                              | 2)(x+ 9)                                                           |            |  |  |
| C. (x +                                                              | (-3)(x-6)                                                          |            |  |  |
| D. (x –                                                              | -3)(x+6)                                                           |            |  |  |
| 5 If a · b-                                                          | $2\cdot 3$ and $c \cdot 3 - 3\cdot 1$ then $a \cdot b \cdot c$ act | nals       |  |  |

- 5. If a : b=2:3 and c: a = 3:1, then a: b: c equals
  - A. 2:3:1
  - B. 3:3:1
  - C. 6:3:2
  - D. 2:3:6


Section BShort Questions(40 marks)Answer ALL questions in this section. Each question carries 10 marks.

- 6. (a) Factorize  $x^2 9x 36$ . (4 marks) (b) Hence, factorize  $y^4 - 9y^2 - 36$ . (6 marks)
- 7. Solve the simultaneous equations:

$$2x - y = 5$$

$$x^{2} + xy = 2$$
(10 marks)

8. In figure 1, AB is a diameter of the circle and A,B C, D and E are points on the circumference of the circle. Given  $\angle CAB = 33^{\circ}$ ,



9. Solve the following inequalities:

$$(a)\frac{2x+1}{3} > 1-x \tag{4 marks}$$

(b) 
$$2x^2 - 7x > -6$$
 (6 marks)

10. Given  $10x^2 + 4x + 1 = 2ax(2-x)$ 

| (a) | Find the range of values of a for which the equation has real roots. | (10 marks) |
|-----|----------------------------------------------------------------------|------------|
|-----|----------------------------------------------------------------------|------------|

- (b) Find the values of a for which the equation has repeated (equal) roots. (5 marks)
- (c) Find the range of values of a for which the equation has no real roots. (5 marks)
- 11. The unit cost of a lunch box is partly constant and partly varies inversely as the number of people buying lunch boxes. The unit cost is \$15 when 100 people buy lunch boxes and the unit cost is \$25.50 when the number of people becomes 50.
  - (a) Find a mathematical formula connecting the unit cost of a lunch box and the number of people buying lunch boxes. (10 marks)
  - (b) Calculate the unit cost of a lunch box when the number of people become 200. (4 marks)
  - (c) Calculate the minimum number of people buying lunch boxes when the unit cost is \$13.

(6 marks)

## END OF ASSIGNMENT I

1.A 2.B 3.B 4.C 5.D  
6. (a) 
$$x^2 - 9x - 36 = (x - 12)(x + 3)$$
  
(b) Let  $y^2 = x$ ,  
 $y^4 - 9y^2 - 36 = x^2 - 9x - 36$   
 $= (x - 12)(x + 3)$   
Substitute  $y^2 = x$ ,  
 $y^4 - 9y^2 - 36 = (y^2 - 12)(y^2 + 3)$   
7.  $2x - y = 5 \Rightarrow y = 2x - 5$   
Substitute into  $x^2 + xy = 2$   
 $x^2 + (2x^2 - 5x) = 2$   
 $3x^2 - 5x - 2 = 0$   
 $(x - 2)(3x + 1) = 0$   
 $x = 2$  or  $x = -\frac{1}{3}$   
 $x = 2$ ,  $y = -1$  or  $x = -\frac{1}{3}$ ,  $y = -\frac{17}{3}$   
8.  
(a)  $\angle ACB = 90^{\circ}$ 

$$\angle ABC + 90^{\circ} + 33^{\circ} = 180^{\circ}$$
$$\angle ABC = 57^{\circ}$$
  
(b) 
$$\angle ADC + \angle ABC = 180^{\circ}$$
$$\angle ADC = 123^{\circ}$$
  
(c) 
$$\angle AEC = \angle ADC = 123^{\circ}$$

9. (a) From 
$$\frac{2x+1}{3} > 1-x$$

$$2x + 1 > 3 - 3x$$
  

$$x > 0.4$$
(b) From 
$$2x^{2} - 7x > -6$$
  

$$2x^{2} - 7x + 6 > 0$$
  

$$(2x - 3)(x - 2) > 0$$
  

$$x > 2 \text{ or } x < 1.5$$

- 10. (a) Equation is  $(10+2a)x^2 + (4\cdot4a)x+1=0$ , discriminant =  $4^2(1-a)^2 - 4.2(a+5)$ =8(2a+1)(a-3) For real roots, discriminant ? 0 a? 3 or a? -1/2
  - (b) For equal roots, discriminant =0

a = 3 or -1/2

- (c) For no real roots, discrininant <0 -1/2<a<3
- 7. (a) Let c = unit cost; n = number of people; a = constant; k = proportionality constant Hence,  $c = a + \frac{k}{n}$ ; from data  $15 = a + \frac{k}{100} \dots (1)$  and  $25.5 = a + \frac{k}{50} \dots (2)$ Solving, k = 1050 and a = 4.5

(b) From 
$$c = 4.5 + \frac{1050}{n}$$
 and  $n = 200$ , unit cost = \$9.75

(c) From 
$$c = 4.5 + \frac{1050}{n}$$
 and  $c = 13$ , minimum number is 124

## END OF ASSIGNMENT I

]