Tutorial 22 : Equation of a circle & its intersection with a straight line

1. Write down the equations of the following circles with the given centres and radii

(a) Centre
$$(2, 3)$$
, radius = 7

- (b) Centre (0, -6), $radius = \frac{3\sqrt{2}}{2}$
- (c) Centre $(-\frac{1}{2}, -\frac{1}{3})$, radius = 1
- 2. Find the coordinates of the centre and the radius of each of the following circles.

(a)
$$x^2 + y^2 - 16 = 0$$

- (b) $x^2 + y^2 12 x + 18 y + 17 = 0$
- (c) $9x^2 + 9y^2 6x 72y + 28 = 0$
- 3. Find the intersection point(s) between the circle, C, and the line, L.

Given
$$\begin{cases} C: x^2 + y^2 - 5x + 6y - 85 = 0\\ L: 2x - 3y + 15 = 0 \end{cases}$$

4. The line L: y = 3x + (k + 1) (where k is a constant) is tangent to the circle C: $(x-3)^2 + (y-1)^2 = 9$. Find the values of k.

(Note that a circle should have 2 different tangents of same slope, therefore, 2 different values of k can be found)

5. Given a circle C: $(x - 7)^2 + (y + 6)^2 = k$ (where k is a constant)

Find the range of values of k such that:

- a) x-axis is a tangent of C
- b) x-axis intersect at 2 distinct points with C
- c) x-axis does not intersect at any points with C

(Think about this problem graphically, you may solve it quickly without tedious calculation)

9/2002

Solution to Tutorial 25

1.	(a)		$(x-2)^2 + (y-3)^2 = 7^2$		
			$x^2 + y^2 - 4 x - 6 y - 36$	= 0	
		(b)	$(x - 0)^2 + (y + 6)^2 =$	$=(\frac{3\sqrt{2}}{2})^2$	
			$x^2 + y^2 + 12 y + 36 - \frac{9}{2}$	= 0	
			$2 x^2 + 2 y^2 + 24 y + 63$	= 0	
(c)		:)	$(x + \frac{1}{2})^2 + (y + \frac{1}{3})^2 =$	1	
			$x^2 + y^2 + x + \frac{2}{3}y - \frac{23}{36}$	= 0	
			$36 x^2 + 36 y^2 + 36 x + 2$	$x^{2} + 36 y^{2} + 36 x + 24 y - 23 = 0$	
2.	(a)		Centre is (0, 0),	$\mathbf{r} = 4$	
	(b)		Centre is (6, -9),	$r = \sqrt{\left(-6\right)^2 + 9^2 - 17} = 10$	

(c)
$$9x^2 + 9y^2 - 6x - 72y + 28 = 0$$

 $x^2 + y^2 - \frac{2}{3}x - 8y + \frac{28}{9} = 0$
Centre is $(\frac{1}{3}, 4)$, $r = \sqrt{(-\frac{1}{3})^2 + (-4)^2 - \frac{28}{9}} = \sqrt{13}$

3. Solve the simultaneous equation system

$$\begin{cases} C: x^2 + y^2 - 5x + 6y - 85 = 0 & \dots \\ L: 2x - 3y + 15 = 0 & \dots \\ (2), x = (3/2)y - (15/2) & \dots \\ (3) \\ Subs (3) into (1), \\ ((3/2)y - (15/2))^2 + y^2 - 5((3/2)y - (15/2)) + 6y - 85 = 0 \\ 13y^2 - 96y + 35 = 0 \\ y = 7 \text{ or } 5/13 \\ Subs this results into (3), \\ When y = 7, x = 3 \\ When y = 5/13, x = -90/13 \\ L \text{ cuts C at 2 distinct points:} (7, 3) & (5/13, -90/13) \end{cases}$$

4. Substitute L into C:

$$(x - 3)^{2} + (3x + k)^{2} = 9$$

$$x^{2} - 6x + 9 + 9x^{2} + 6kx + k^{2} - 9 = 0$$

$$10x^{2} + (6k - 6)x + k^{2} = 0$$

For L is a tangent, the above quadratic equation should has only 1 root

Discriminant = 0 $(6k - 6)^2 - 4(10)(k^2) = 0$ $36k^2 - 72k + 36 - 40 k^2 = 0$ $-4k^2 - 72k + 36 = 0$ $k^2 + 18k - 9 = 0$ k = 0.4868 or -18.49 (4 sign. fig.)

5. Note that C is circle centered at (7, -6) with radius $r = \sqrt{k}$ (See Figure 1 below)

Obviously, when	r = 6,	x-axis is a tangent to C				
when	r>6,	x-axis intersect C at 2 distinct points				
when	r < 6,	x-axis doesn't intersect with C				
Therefore, we conclude, (since $r = \sqrt{k}$)						
when k =	36, x-ax	is is a tangent to C				
when k>	36, x-ax	tis intersect C at 2 distinct points				
when k <	36, x-ax	is doesn't intersect with C				