Tutorial 22 : Equation of a circle \& its intersection with a straight line

1. Write down the equations of the following circles with the given centres and radii
(a) Centre $(2,3)$, radius $=7$
(b) Centre $(0,-6)$, radius $=\frac{3 \sqrt{2}}{2}$
(c) Centre $\left(-\frac{1}{2},-\frac{1}{3}\right)$, radius $=1$
2. Find the coordinates of the centre and the radius of each of the following circles.
(a) $x^{2}+y^{2}-16=0$
(b) $x^{2}+y^{2}-12 x+18 y+17=0$
(c) $9 x^{2}+9 y^{2}-6 x-72 y+28=0$
3. Find the intersection point(s) between the circle, C , and the line, L .

Given $\left\{\begin{array}{l}C: x^{2}+y^{2}-5 x+6 y-85=0 \\ L: 2 x-3 y+15=0\end{array}\right.$
4. The line $\mathrm{L}: \mathrm{y}=3 \mathrm{x}+(\mathrm{k}+1)$ (where k is a constant) is tangent to the circle $\mathrm{C}:(\mathrm{x}-3)^{2}$ $+(y-1)^{2}=9$. Find the values of k.
(Note that a circle should have 2 different tangents of same slope, therefore, 2 different values of k can be found)
5. Given a circle $\mathrm{C}:(\mathrm{x}-7)^{2}+(\mathrm{y}+6)^{2}=\mathrm{k}$ (where k is a constant)

Find the range of values of k such that:
a) x -axis is a tangent of C
b) x-axis intersect at 2 distinct points with C
c) x-axis does not intersect at any points with C
(Think about this problem graphically, you may solve it quickly without tedious calculation)

Solution to Tutorial 25

1. (a) $(x-2)^{2}+(y-3)^{2}=7^{2}$

$$
x^{2}+y^{2}-4 x-6 y-36=0
$$

(b) $\quad(x-0)^{2}+(y+6)^{2}=\left(\frac{3 \sqrt{2}}{2}\right)^{2}$

$$
x^{2}+y^{2}+12 y+36-\frac{9}{2}=0
$$

$$
2 x^{2}+2 y^{2}+24 y+63=0
$$

(c) $\quad\left(x+\frac{1}{2}\right)^{2}+\left(y+\frac{1}{3}\right)^{2}=1$

$$
\begin{aligned}
& x^{2}+y^{2}+x+\frac{2}{3} y-\frac{23}{36}=0 \\
& 36 x^{2}+36 y^{2}+36 x+24 y-23=0
\end{aligned}
$$

2. (a) Centre is $(0,0), \quad r=4$
(b) \quad Centre is $(6,-9), \quad r=\sqrt{(-6)^{2}+9^{2}-17}=10$
(c) $9 x^{2}+9 y^{2}-6 x-72 y+28=0$
$x^{2}+y^{2}-\frac{2}{3} x-8 y+\frac{28}{9}=0$
Centre is $\left(\frac{1}{3}, 4\right), \quad r=\sqrt{\left(-\frac{1}{3}\right)^{2}+(-4)^{2}-\frac{28}{9}}=\sqrt{13}$
3. Solve the simultaneous equation system

$$
\left\{\begin{array}{l}
C: x^{2}+y^{2}-5 x+6 y-85=0 \tag{1}\\
L: 2 x-3 y+15=0
\end{array}\right.
$$

from (2), $\quad x=(3 / 2) y-(15 / 2)$
Subs (3) into (1),

$$
\begin{aligned}
& ((3 / 2) y-(15 / 2))^{2}+y^{2}-5((3 / 2) y-(15 / 2))+6 y-85=0 \\
& 13 y^{2}-96 y+35=0 \\
& y=7 \text { or } 5 / 13
\end{aligned}
$$

Subs this results into (3),
When $\mathrm{y}=7, \mathrm{x}=3$
When $y=5 / 13, x=-90 / 13$
L cuts C at 2 distinct points: $(7,3) \&(5 / 13,-90 / 13)$
4. Substitute L into C :

$$
\begin{aligned}
& (x-3)^{2}+(3 x+k)^{2}=9 \\
& x^{2}-6 x+9+9 x^{2}+6 k x+k^{2}-9=0 \\
& 10 x^{2}+(6 k-6) x+k^{2}=0
\end{aligned}
$$

For L is a tangent, the above quadratic equation should has only 1 root

$$
\text { Discriminant }=0
$$

$$
\begin{aligned}
& (6 k-6)^{2}-4(10)\left(k^{2}\right)=0 \\
& 36 k^{2}-72 k+36-40 k^{2}=0 \\
& -4 k^{2}-72 k+36=0 \\
& k^{2}+18 k-9=0 \\
& k=0.4868 \text { or }-18.49 \text { (4 sign. fig.) }
\end{aligned}
$$

5. Note that C is circle centered at $(7,-6)$ with radius $\mathrm{r}=\sqrt{k}$ (See Figure 1 below)

Figure 1

Obviously, when $r=6, \quad x$-axis is a tangent to C

$$
\begin{array}{lll}
\text { when } & \mathrm{r}>6, & \mathrm{x} \text {-axis intersect } \mathrm{C} \text { at } 2 \text { distinct points } \\
\text { when } & \mathrm{r}<6, & \mathrm{x} \text {-axis doesn't intersect with } \mathrm{C}
\end{array}
$$

Therefore, we conclude, (since $\mathrm{r}=\sqrt{k})$
when $\quad k=36, \quad x$-axis is a tangent to C
when $\mathrm{k}>36, \mathrm{x}$-axis intersect C at 2 distinct points
when $k<36$, x-axis doesn't intersect with C

