Unit 22 : Equation of a circle and its intersection with a straight line

Learning Objectives

Students should be able to:

- Recognize the standard form of a circle
- Determine the standard form of a circle when its center and radius are given
- Recognize the general form of a circle
- Determine the center and radius of a circle when its general form is given
- Determine the equation of a circle passing through three given points.
- Determine the intersection point(s) between a circle and a line
- Determine the number of intersection point(s) between a circle and a line
- Determine the equation of the tangent to a circle

1. The Standard Form of a Circle

A circle is the locus of the point which moves so that its distance from a fixed point is constant.

The fixed point is called the centre and the constant distance the radius of the circle (as shown in Fig. 1a).

If a circle with center at C(h, k) and radius r, the distance of P(x, y), a point on the circle, from centre C(h, k) is equal to the radius r.

From Fig. 1b,

PC =
$$\sqrt{(x-h)^2 + (y-k)^2} = r$$

or $(x-h)^2 + (y-k)^2 = r^2$

This equation is called the standard form of the circle with centre at C(h, k) and radius r.

Example 1:

Find the equation of the circle with centre at (3,2) and radius 5.

Solution:

The equation of the circle is

$$(x-3)^2 + (y-2)^2 = 5^2$$

or
$$x^2 + y^2 - 6x - 4y - 12 = 0$$

Example 2:

Find the equation of the circle with centre at (2, -1) and radius $\sqrt{7}$.

Solution:

The equation of the circle is

$$(x-2)^{2} + (y+1)^{2} = \sqrt{7}^{2}$$

or $x^{2} + y^{2} - 4x + 2y - 2 = 0$

Example 3: Find the equation of the circle with centre at C(2, 5) and passes through A(-2, 2).

Solution: Radius $CA = \sqrt{4^2 + 3^2} = 5$

Hence equation of the circle is:

$$(x-2)^{2} + (y-5)^{2} = 5^{2}$$

or $x^{2} + y^{2} - 4x - 10y + 4 = 0$.

Example 4: Find the equation of the circle centered at (3, -5) and tangential to the y-axis.

Solution: Radius r = 3

Hence equation of the circle is:

$$(x-3)^{2} + (y+5)^{2} = 3^{2}$$

or $x^{2} + y^{2} - 6x + 10y + 25 = 0$

2. <u>The General Form of a Circle</u>

The stand form of a circle is $(x-h)^2 + (y-k)^2 = r^2$, expanding this equation gives $x^2 + y^2 - 2hx - 2ky + (h^2 + k^2 - r^2) = 0$... (*)

From this and the results we have worked out in the previous examples, we realize that the equation of a circle is quadratic in both x and y but without xy term. Besides, the coefficients of x^2 and y^2 terms are equal (usually set to unity). We therefore conclude that every circle can be written in the form

 $x^{2} + y^{2} + dx + ey + f = 0$... (**)

and (**) is called the general form of a circle.

If (*) and (**) represent the same circle, then

$$\begin{cases} d = -2h \\ e = -2k \\ f = h^{2} + k^{2} - r^{2} \end{cases} \text{ or } \begin{cases} h = \frac{-d}{2} \\ k = \frac{-e}{2} \\ r = \sqrt{(\frac{d}{2})^{2} + (\frac{e}{2})^{2} - f} \end{cases}$$

٢

Hence
$$x^2 + y^2 + dx + ey + f = 0$$
 represents a circle with centre at $(\frac{-d}{2}, \frac{-e}{2})$ and
radius $r = \sqrt{(\frac{d}{2})^2 + (\frac{e}{2})^2 - f}$.

3.

Example 5: Find the centre and radius of the circle $x^2 + y^2 - 6y = 0$; Solution:

$$h = \frac{-0}{2} = 0, \quad k = \frac{-(-6)}{2} = 3$$

and $r = \sqrt{0^2 + (-3)^2 - 0} = 3$
hence centre C = (0, 3) and radius r =

Example 6: Find the equation of the circle which passes through the points (4, 1), (5, 0) and (-2, -7).

3. Intersection between a circle and a line

Consider a line L: y = ax + b

and a circle C:

 $x^2 + y^2 + dx + ey + f = 0,$

by substituting L into C,

$$x^{2} + (ax+b)^{2} + dx + e(ax+b) + f = 0 \dots \dots (*)$$

equation (*) is quadratic and gives the x-coordinates of the points in which the line L meets the circle C.

Example 7: Find the point(s) of intersection of the line 4x - 3y + 16 = 0 and the circle $x^2 + y^2 - 6x - 2y - 15 = 0$

Solution: 4x - 3y + 16 = 0

$$\mathbf{x} = \frac{3}{4} \mathbf{y} - 4 \tag{1}$$

$$x^{2} + y^{2} - 6x - 2y - 15 = 0$$
⁽²⁾

Subs (1) into (2) :

$$\left(\frac{3}{4}y - 4\right)^{2} + y^{2} - 6\left(\frac{3}{4}y - 4\right) - 2y - 15 = 0$$

$$\frac{25}{16}y^{2} - \frac{25}{2}y - 25 = 0$$

$$y^{2} - 8y + 16 = 0$$

$$(y - 4)^{2} = 0$$

$$y = 4 \qquad \text{(repeated)}$$

When $y = 4$, $x = \frac{3}{4}(4) - 4 = -1$

The point of intersection is (-1, 4)

4. <u>Condition for a line to be a tangent to a circle</u>

Let Δ denote the discriminant of equation (*), In case I: there are 2 distinct intersection points, $\Delta > 0$; In case II: there is 1 intersection point, $\Delta = 0$; In case III: there is no intersection point, $\Delta < 0$.

Note that if a line L intersects (touches) a circle C at 1 point, this line is a **tangent** to the circle. Hence the condition that L is a tangent to C is $\Delta = 0$.

Example 8: (a) Find the point(s) of intersection between the circle

C : $x^2 + y^2 - 6x - 18y + 65 = 0$ and y-axis.

(b) Show that there is no intersection point between C and x-axis.

Solution: (a)
$$x^{2} + y^{2} - 6x - 18y + 65 = 0$$
 (1)
 $x = 0$ (2)
Subs (2) into (1), $y^{2} - 18y + 65 = 0$
 $(y - 5) (y - 13) = 0$
 $y = 5 \text{ or } y = 13$
C cuts the y - axis at (0, 5) and (0, 13).

(b) Substitute
$$y = 0$$
 into (1),
 $x^2 - 6x + 65 = 0$ (3)
The discriminant of (3): $\Delta = (-6)^2 - 4(1)(65) = -224 < 0$

There is no intersection between circle C and the x-axis.

Example 9: Find the value(s) of m if the line y = m x is a tangent to the circle $x^2 + y^2 - x - 2 y + 1 = 0$.

Solution: Substitute y = m x into $x^2 + y^2 - x - 2 y + 1 = 0$, we get $x^2 + m^2 x^2 - x - 2 m x + 1 = 0$ $(m^2 + 1) x^2 - (2 m + 1) x + 1 = 0$ $\Delta = 0: (2 m + 1)^2 - 4(m^2 + 1)(1) = 0$ 4 m = 3 or $m = \frac{3}{4}$

The equation of the tangent is $y = \frac{3}{4}x$.