Unit 22 : Equation of a circle and its intersection with a straight line

Learning Objectives

Students should be able to:

- Recognize the standard form of a circle
- Determine the standard form of a circle when its center and radius are given
- Recognize the general form of a circle
- Determine the center and radius of a circle when its general form is given
- Determine the equation of a circle passing through three given points.
- Determine the intersection point(s) between a circle and a line
- Determine the number of intersection point(s) between a circle and a line
- Determine the equation of the tangent to a circle

1. The Standard Form of a Circle

A circle is the locus of the point which moves so that its distance from a fixed point is constant.

The fixed point is called the centre and the constant distance the radius of the circle (as shown in Fig. 1a).

If a circle with center at $\mathrm{C}(\mathrm{h}, \mathrm{k})$ and radius r , the distance of $\mathrm{P}(\mathrm{x}, \mathrm{y})$, a point on the circle, from centre $C(h, k)$ is equal to the radius r.
From Fig. 1b,
$\mathrm{PC}=\sqrt{(x-h)^{2}+(y-k)^{2}}=r$
or $(x-h)^{2}+(y-k)^{2}=r^{2}$

This equation is called the standard form of the circle with centre at $\mathrm{C}(\mathrm{h}, \mathrm{k})$ and radius r .

Example 1:

Find the equation of the circle with centre at $(3,2)$ and radius 5 .
Solution:
The equation of the circle is

$$
(x-3)^{2}+(y-2)^{2}=5^{2}
$$

or $x^{2}+y^{2}-6 x-4 y-12=0$
Example 2:
Find the equation of the circle with centre at $(2,-1)$ and radius $\sqrt{7}$.
Solution:
The equation of the circle is

$$
(x-2)^{2}+(y+1)^{2}=\sqrt{7}^{2}
$$

or $x^{2}+y^{2}-4 x+2 y-2=0$.
Example 3: Find the equation of the circle with centre at $C(2,5)$ and passes through $\mathrm{A}(-2,2)$.
Solution: Radius $\mathrm{CA}=\sqrt{4^{2}+3^{2}}=5$
Hence equation of the circle is:

$$
\begin{aligned}
& (x-2)^{2}+(y-5)^{2}=5^{2} \\
& \text { or } \quad x^{2}+y^{2}-4 x-10 y+4=0 .
\end{aligned}
$$

Example 4: Find the equation of the circle centered at $(3,-5)$ and tangential to the y-axis.
Solution: Radius $r=3$
Hence equation of the circle is:

$$
\begin{aligned}
& (x-3)^{2}+(y+5)^{2}=3^{2} \\
& \text { or } x^{2}+y^{2}-6 x+10 y+25=0 .
\end{aligned}
$$

2. The General Form of a Circle

The stand form of a circle is $(x-h)^{2}+(y-k)^{2}=r^{2}$, expanding this equation gives $\left.\quad x^{2}+y^{2}-2 h x-2 k y+\left(h^{2}+k^{2}-r^{2}\right)=0 \quad \ldots \ldots{ }^{*}\right)$
From this and the results we have worked out in the previous examples, we realize that the equation of a circle is quadratic in both x and y but without xy term. Besides, the coefficients of x^{2} and y^{2} terms are equal (usually set to unity). We therefore conclude that every circle can be written in the form

$$
x^{2}+y^{2}+d x+e y+f=0 \quad \ldots \quad \ldots \quad(* *)
$$

and $\left({ }^{* *)}\right.$ is called the general form of a circle.

If $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$ represent the same circle, then

$$
\left\{\begin{array} { l }
{ d = - 2 h } \\
{ e = - 2 k } \\
{ f = h ^ { 2 } + k ^ { 2 } - r ^ { 2 } }
\end{array} \quad \text { or } \left\{\begin{array}{l}
h=\frac{-d}{2} \\
k=\frac{-e}{2} \\
r=\sqrt{\left(\frac{d}{2}\right)^{2}+\left(\frac{e}{2}\right)^{2}-f}
\end{array}\right.\right.
$$

> Hence $x^{2}+y^{2}+d x+e y+f=0$ represents a circle with centre at $\left(\frac{-d}{2}, \frac{-e}{2}\right)$ and radius $r=\sqrt{\left(\frac{d}{2}\right)^{2}+\left(\frac{e}{2}\right)^{2}-f}$.

Example 5: Find the centre and radius of the circle $x^{2}+y^{2}-6 y=0$;

Solution:

$h=\frac{-0}{2}=0, k=\frac{-(-6)}{2}=3$
and $\quad r=\sqrt{0^{2}+(-3)^{2}-0}=3$
hence centre $\mathrm{C}=(0,3)$ and radius $\mathrm{r}=3$.

Example 6: Find the equation of the circle which passes through the points $(4,1),(5,0)$ and ($-2,-7$).
Solution: Let the equation be $x^{2}+y^{2}+d x+e y+f=0$
Then $16+1+4 \mathrm{~d}+\mathrm{e}+\mathrm{f}=0$

$$
4 d+e+f=-17 \quad \ldots \ldots(1)
$$

$$
25+0+5 \mathrm{~d}+0 \mathrm{e}+\mathrm{f}=0
$$

$$
5 \mathrm{~d}+0 \mathrm{e}+\mathrm{f}=-25 \quad \ldots \ldots(2)
$$

$$
4+49-2 d-7 e+f=0
$$

$$
\begin{equation*}
-2 d-7 \mathrm{e}+\mathrm{f}=-53 \quad \ldots \ldots(3) \tag{4}
\end{equation*}
$$

(2)-(1): $\mathrm{d}-\mathrm{e}=-8$.
(2)-(3): $7 \mathrm{~d}+7 \mathrm{e}=28$

$$
\begin{equation*}
\mathrm{d}+\mathrm{e}=4 . \tag{5}
\end{equation*}
$$

(4) $+(5): d=-2$

Sub. $d=-2$ into (5) : e $=6$
Sub. $d=-2$ into (2) : $f=-15$
Hence the equation of the circle is $x^{2}+y^{2}-2 x+6 y-15=0$.

3. Intersection between a circle and a line

Consider a line L: $\quad y=a x+b$
and a circle $\mathrm{C}: \quad x^{2}+y^{2}+d x+e y+f=0$,
by substituting L into C ,

$$
x^{2}+(a x+b)^{2}+d x+e(a x+b)+f=0
$$

equation (*) is quadratic and gives the x -coordinates of the points in which the line L meets the circle C .

Example 7: Find the point(s) of intersection of the line $4 x-3 y+16=0$ and the circle $x^{2}+y^{2}-6 x-2 y-15=0$

Solution: $\quad 4 x-3 y+16=0$

$$
\begin{align*}
& x=\frac{3}{4} y-4 \tag{1}\\
& x^{2}+y^{2}-6 x-2 y-15=0 \tag{2}
\end{align*}
$$

Subs (1) into (2) :

$$
\begin{aligned}
& \left(\frac{3}{4} y-4\right)^{2}+y^{2}-6\left(\frac{3}{4} y-4\right)-2 y-15=0 \\
& \frac{25}{16} y^{2}-\frac{25}{2} y-25=0 \\
& y^{2}-8 y+16=0 \\
& (y-4)^{2}=0 \\
& y=4 \quad \text { (repeated) } \\
& \text { When } y=4, \quad x=\frac{3}{4} \quad(4)-4=-1
\end{aligned}
$$

The point of intersection is $(-1,4)$
4. Condition for a line to be a tangent to a circle

Let Δ denote the discriminant of equation (*),
In case I: there are 2 distinct intersection points, $\Delta>0$;
In case II: there is 1 intersection point, $\Delta=0$;
In case III: there is no intersection point, $\Delta<0$.

Note that if a line L intersects (touches) a circle C at 1 point, this line is a
tangent to the circle. Hence the condition that L is a tangent to C is $\Delta=0$.

Example 8: (a) Find the point(s) of intersection between the circle $C: x^{2}+y^{2}-6 x-18 y+65=0$ and y axis.
(b) Show that there is no intersection point between C and x-axis.

Solution:

$$
\begin{align*}
& \text { (a) } x^{2}+y^{2}-6 x-18 y+65=0 \tag{1}\\
& x=0 \tag{2}\\
& \text { Subs (2) into }(1), y^{2}-18 y+65=0 \\
& \quad(y-5)(y-13)=0 \\
& \quad y=5 \text { or } y=13
\end{align*}
$$

C cuts the $y-$ axis at $(0,5)$ and $(0,13)$.
(b) Substitute $\mathrm{y}=0$ into (1),

$$
\begin{equation*}
x^{2}-6 x+65=0 \tag{3}
\end{equation*}
$$

The discriminant of (3) : $\Delta=(-6)^{2}-4(1)(65)=-224<0$ There is no intersection between circle C and the x-axis.

Example 9: Find the value(s) of m if the line $y=m x$ is a tangent to the circle $x^{2}+$ $y^{2}-x-2 y+1=0$.

Solution: Substitute $y=m x$ into $x^{2}+y^{2}-x-2 y+1=0$, we get

$$
\begin{aligned}
& x^{2}+m^{2} x^{2}-x-2 m x+1=0 \\
& \left(m^{2}+1\right) x^{2}-(2 m+1) x+1=0 \\
& \Delta=0: \quad(2 m+1)^{2}-4\left(m^{2}+1\right)(1)=0
\end{aligned}
$$

$$
4 \mathrm{~m}=3
$$

$$
\text { or } \quad m=\frac{3}{4}
$$

The equation of the tangent is $y=\frac{3}{4} x$.

