Unit 4: Quadratic equations in one unknown

Learning Objectives

The students should be able to:

- **I** Define a quadratic equation and its solutions (roots)
- Solve quadratic equations by factorization
- Solve quadratic equations by the quadratic formula
- **I** Determine the nature of the roots by the discriminant or the quadratic graph
- Find the sum of roots and the product of roots
- I Solve practical problems leading to quadratic equations
- Form quadratic equations with given roots

Quadratic equations in one unknown

1. What is a quadratic equation?

A quadratic equation is an equation that can be written as $ax^2 + bx + c = 0$, where *a*, *b* and *c* are constants and $a \neq 0$.

Determine if the following	Explanation
equations are quadratic equations	
a) $2x^2 + 3x - 4 = 0$	Yes, form correct, $a \neq 0$
b) $2x^2 + 3x = 0$, form correct , $a \neq 0, c = 0$
c) $2x^2 - 4 = 0$, form correct , $a \neq 0, b = 0$
d) $2x^2 + 3x - 4 = x^2 - x + 3$, after rearrangement: form correct , $a \neq 0$
e) $2x^2 + 3x - 4 = 2(x-1)^2$, after rearrangement: $a = 0$
f) $2x^2 + 3\sqrt{x} - 4 = 0$, should not contain non-integral power of <i>x</i> .
	Determine if the following equations are quadratic equations a) $2x^2 + 3x - 4 = 0$ b) $2x^2 + 3x = 0$ c) $2x^2 - 4 = 0$ d) $2x^2 + 3x - 4 = x^2 - x + 3$ e) $2x^2 + 3x - 4 = 2(x - 1)^2$ f) $2x^2 + 3\sqrt{x} - 4 = 0$

A solution (root) of an equation is a real number that satisfies the equation when it replaces the variable of the equation. In other words, LHS=RHS after substitution. e.g. 3 is a solution of $x^2 - 9 = 0$ because $3^2 - 9 = 0 =$ the RHS. e.g. 2 is not a solution of $x^2 - 9 = 0$ because $2^2 - 9 = -5 \neq$ the RHS.

2. How to solve a quadratic equation?

2.1 By factorization

• If xy = 0 then either x = 0 or y = 0. Similarly, if $ax^2 + bx + c = 0$ can be written as (dx + e)(fx + g) = 0, then either dx + e = 0 or fx + g = 0.

Both of the equations may be solved readily.

Eg. 2	Solve $x^2 + 3x + 2 = 0$	Explanation
Solution	$x^2 + 3x + 2 = 0$	
	(x+1)(x+2) = 0	Factorization
	x + 1 = 0 or $x + 2 = 0$	Optional.
	$x = -1 \text{ or } x = -2_{\#}$	

Eg. 3	Solve $x^2 - 8 = 1$	
Solution	$x^2 - 8 = 1$	
	$x^2 - 9 = 0$	Convert the equation into the standard form
	$(x + \underline{})(x - \underline{}) = 0$	Factorization.
	$x = - \{\#} or \{\#}$	
Eg. 4	Solve $6x^2 + 23x + 21 = 0$	
Solution	$6x^2 + 23x + 21 = 0$	
	$(2x + _)(3x + _) = 0$	Factorization.
	$x = \frac{-}{2} or \frac{-7}{-}_{\#}$	

There are a few drawbacks of the factorization method. Firstly, when $a \neq 1$, the factorization may not be done easily. Secondly, there are quadratic equations that cannot be factorized without using surds; $x^2 + x - 1 = 0$ is an example.

2.2 By formula

$-\frac{-b\pm\sqrt{b^2-4ac}}{4ac}$					
•	$x = \frac{1}{2a}$				
Eg. 5	Solve $x^2 + 3x + 2 = 0$	Explanation			
Solution	$x^2 + 3x + 2 = 0$	a = 1, b = 3, c = 2.			
	$x = \frac{-3 \pm \sqrt{_^2 - 4(_)(2)}}{2(_)}$				
	= <u>±1</u>				
	<i>or</i> –#				
Eg. 6	Solve $x^2 - 8 = 1$				
Solution	$x^2 - 8 = 1$	a = 1, b = 0, c = -9.			
	$x^2 - 9 = 0$				
	$x = \frac{0 \pm \sqrt{-4(1)(-_)}}{2(_)}$				
	= $or -$ #				
Eg. 7	Solve $6x^2 + 23x + 21 = 0$				
Solution	$6x^2 + 23x + 21 = 0$				
	$x = \frac{- \underline{- \pm \sqrt{\underline{- 2}^2 - 4(\underline{-})(\underline{-})}}}{2(\underline{-})}$				
	$x = \frac{-3}{\underline{\qquad}} or \frac{-\underline{\qquad}}{3}_{\#}$				

Eg. 8	Solve $x^2 + x - 1 = 0$	
Solution	$x^2 + x - 1 = 0$	
	$x = \frac{-1 \pm \sqrt{1^2 - 4(_)(-1)}}{2(_)}$	
	$=\frac{-1-\sqrt{-1}}{2} or \frac{-1+\sqrt{-1}}{$	
Eg. 9	Solve $x^2 + x + 1 = 0$	
Solution	$x^2 + x + 1 = 0$	
	$x = \frac{-__\pm\sqrt{1^2 - 4(__)(__)}}{2(__)}$	
	$=-1\pm\sqrt{$	
	$\therefore \sqrt{-3}$ is not real, there are no real roots.	

3. Solve practical problems leading to quadratic equations

- Step 1: Let the unknown variable be *x*, say.
- Step 2: Set up a quadratic equation in *x* according to the given conditions.
- Step 3: Solve the quadratic equation to find the solutions.
- Step 4: Check if the value of the solution is valid and reject invalid values.

Eg. 10	The difference between two numbers is 6 and	
	their product is 247. Find the two numbers.	
Solution	Let the smaller number be x . Then the larger	Step 1
	number would be $x + 6$.	
	$x(x + \) = 247$	Step 2
	$x^{2} + \underline{\qquad} x - 247 = 0$	
	$(x - \underline{})(x + \underline{}) = 0$	
	$x = __or - _$	Step 3
	The two numbers are (13,) or (, -19)	
Eg. 11	The length of a rectangle is 6cm longer than	
	its width. The area of the rectangle is 16 cm^2 .	
	Find the length of the rectangle.	
Solution	Let the length be x . Then the width would be	
	<i>x</i> - 6.	
	$x(x - \underline{}) = 16$	
	$x^2 - \underline{\qquad} x - 16 = 0$	
	$(x - \underline{})(x + \underline{}) = 0$	
	$x = \cm (x < 0 \text{ is rejected})$	

Eg. 12	The speed of the water current is <i>x</i> km/hr. The speed of a boat in still water is x^2 km/hr. After 1.5	
	hours upstream and 1 hour downstream the boat	
	has moved 26km.	
	a) Write an equation in x	
	b) Find x (correct to 2 dp)	
Solution	a) Total distance = distance travelled upstream + distance travelled downstream (1)	Step 2, the key equation.
	Distance – speed x time (1)	
	By (1) and (2):	
	$26 = (x^2 - _)(1.5) + (x^2 + _)(1)$	Step 2
	$2.5x^2 - \underline{\qquad} x - 26 = 0$	Step 2
	$5x^2 - x - \underline{\qquad} = 0$	
	b) $x = \frac{1 \pm \sqrt{(- _)^2 - 4(5)(_)}}{(- _)^2 - 4(5)(_)}$	
	2()	Step 3
	x = km/hr ($x < 0$ is rejected)	Step 4.

4. Nature of roots

4.1 Discriminant and the number of roots of a quadratic equation

The discriminant, Δ (read as delta), is defined as

 $\Delta = b^2 - 4ac$

Its value tells the number of distinct real roots of a quadratic equation.

$$\therefore x = \frac{-b \pm \sqrt{\Delta}}{2a} = -\frac{b}{a} \pm \frac{\sqrt{\Delta}}{2a},$$

$$\therefore \Delta > 0 \quad \Leftrightarrow 2 \text{ distinct real roots}$$

$$\Delta = 0 \quad \Leftrightarrow 2 \text{ equal real roots or one distinct real root}$$

$$\Delta < 0 \quad \Leftrightarrow \text{ no real root}$$

Eg. 13	Determine the nature of the roots of	
	a) $x^2 + 2x - 1 = 0$	
	b) $x^2 + 2x = 0$	
	c) $x^2 + 2x + 1 = 0$	
	d) $x^2 + 2x + 2 = 0$	
Solution	a) $\Delta = 2^2 - 4(_)(-_) = _ > _$	
	2 real roots	
	b) $\Delta = 2^2 - 4(_)(_) = _ > _$	
	2 real roots	
	c) $\Delta = 2^2 - 4(_)(_) = 0$	
	equal root	
	d) $\Delta = 2^2 - 4(_)(_) = -_ < 0$	
	no real root	

2

The shape of a quadratic graph 4.2

If we plot $y = ax^2 + bx + c$, then we will have two cases:

The roots of $ax^2 + bx + c = 0$ are the x-values of the points with y = 0.

 \Rightarrow the roots of $ax^2 + bx + c = 0$ are the x-intercepts of the graph $y = ax^2 + bx + c$

 \Rightarrow the roots $ax^2 + bx + c = 0$ can be read from the graph $y = ax^2 + bx + c$.

Example: Read from the graph to fill in the following table.

Lixample. Ree	a nom ale graph to m n	The following table.		v –	$-r^2 - 4r$
Condition	<i>y</i> > 0	y = 0	P '	y <u> </u>	-л тл
Value of <i>x</i>	$x > \ $ or $x < \$,			
Condition	$x^2 - 4x + 3 < 0$	$x^2 - 4x + 3 = 0$		- /	
Value of <i>x</i>	< <i>x</i> <	,		1 / 3	3

4.3 Discriminant and the number of x-intercepts of the quadratic graph

Because each *x*-intercept is a root, we have

	$\Delta > 0 \Leftrightarrow$ two <i>x</i> -intercepts	$\Delta = 0 \Leftrightarrow$ one <i>x</i> -intercept	$\Delta < 0 \Leftrightarrow$ no <i>x</i> -intercept of
	of the quadratic graph	of the quadratic graph	the quadratic graph
<i>a</i> >0			
<i>a</i> <0			