Unit 4: Quadratic equations in one unknown

Learning Objectives

The students should be able to:

I Define a quadratic equation and its solutions (roots)

I Solve quadratic equations by factorization

I Solve quadratic equations by the quadratic formula

I Determine the nature of the roots by the discriminant or the quadratic graph

I Find the sum of roots and the product of roots

I Solve practical problems leading to quadratic equations

I Form quadratic equations with given roots

Quadratic equations in one unknown

1. What is a quadratic equation?

A quadratic equation is an equation that can be written as $a x^{2}+b x+c=0$, where a, b and c are constants and $a \neq 0$.

Eg. 1	Determine if the following equations are quadratic equations	Explanation
	a) $2 x^{2}+3 x-4=0$ b) $2 x^{2}+3 x=0$ c) $2 x^{2}-4=0$ d) $2 x^{2}+3 x-4=x^{2}-x+3$ e) $2 x^{2}+3 x-4=2(x-1)^{2}$ f) $2 x^{2}+3 \sqrt{x}-4=0$	Yes, form correct, $a \neq 0$ \qquad form correct , $a \neq 0, c=0$ \qquad , form correct , $a \neq 0, b=0$ \qquad , after rearrangement: form correct , $a \neq 0$ \qquad , after rearrangement: $a=0$ \qquad , should not contain non-integral power of x.

A solution (root) of an equation is a real number that satisfies the equation when it replaces the variable of the equation. In other words, LHS $=$ RHS after substitution.
e.g. 3 is a solution of $x^{2}-9=0$ because $3^{2}-9=0=$ the RHS.
e.g. 2 is not a solution of $x^{2}-9=0$ because $2^{2}-9=-5 \neq$ the RHS.

2. How to solve a quadratic equation?

2.1 By factorization

- If $x y=0$ then either $x=0$ or $y=0$.

Similarly, if $a x^{2}+b x+c=0$ can be written as $(d x+e)(f x+g)=0$, then either $d x+e=0$ or $f x+g=0$.
Both of the equations may be solved readily.

Eg. 2	Solve $x^{2}+3 x+2=0$	Explanation
Solution	$x^{2}+3 x+2=0$	
	$(x+1)(x+2)=0$	Factorization
	$x+1=0$ or $x+2=0$	
$x=-1$ or $x=-2_{\#}$	Optional.	

Eg. 3	Solve $x^{2}-8=1$	
Solution	$\begin{aligned} & x^{2}-8=1 \\ & x^{2}-9=0 \\ & (x+\ldots)\left(x-_\right)=0 \\ & x=-\ldots \text { or__\# } \end{aligned}$	Convert the equation into the standard form Factorization.
Eg. 4	Solve $6 x^{2}+23 x+21=0$	
Solution	$\begin{aligned} & 6 x^{2}+23 x+21=0 \\ & (2 x+\ldots)(3 x+\ldots)=0 \\ & x=\frac{-}{2} \text { or } \frac{-7}{\#} \end{aligned}$	Factorization.

There are a few drawbacks of the factorization method. Firstly, when $a \neq 1$, the factorization may not be done easily. Secondly, there are quadratic equations that cannot be factorized without using surds; $x^{2}+x-1=0$ is an example.

2.2 By formula

- $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Eg. 5	Solve $x^{2}+3 x+2=0$	Explanation
Solution	$\begin{aligned} x^{2}+3 x+2 & =0 \\ x & =\frac{-3 \pm \sqrt{{L_{2}}^{2}-4(\ldots)(2)}}{2(\ldots)} \\ & =\frac{-\ldots \pm 1}{\ldots} \\ & =-\ldots \text { or }-\ldots \ldots \end{aligned}$	$a=1, b=3, c=2$.
Eg. 6	Solve $x^{2}-8=1$	
Solution	$\begin{aligned} x^{2}-8 & =1 \\ x^{2}-9 & =0 \\ x & =\frac{0 \pm \sqrt{-4(1)\left(-__\right)}}{2(\ldots)} \\ & =\ldots \text { or }-\ldots \ldots \end{aligned}$	$a=1, b=0, c=-9$.
Eg. 7	Solve $6 x^{2}+23 x+21=0$	
Solution	$\begin{aligned} 6 x^{2}+23 x+21 & =0 \\ x & =\frac{-\ldots \pm \sqrt{-^{2}-4\left(_\right)\left(_\right)}}{2\left(_\right)} \\ x & =\frac{-3}{-\quad} \text { or } \frac{-\bar{z}}{3} \end{aligned}$	

Eg. 8	Solve $x^{2}+x-1=0$	
Solution	$\begin{aligned} x^{2}+x-1 & =0 \\ x & =\frac{-1 \pm \sqrt{1^{2}-4(\ldots)(-1)}}{2(\ldots)} \\ & =\frac{-1-\sqrt{-}}{2} \text { or } \frac{-1+\sqrt{-}}{} \end{aligned}$	
Eg. 9	Solve $x^{2}+x+1=0$	
Solution	$\begin{aligned} x^{2}+x+1 & =0 \\ x & =\frac{-\ldots \pm \sqrt{1^{2}-4(\ldots)(\ldots)}}{2(\ldots)} \\ & =\frac{-1 \pm \sqrt{-\ldots}}{} \end{aligned}$ $\because \sqrt{-3}$ is not real, there are no real roots.	

3. Solve practical problems leading to quadratic equations

Step 1: Let the unknown variable be x, say.
Step 2: Set up a quadratic equation in x according to the given conditions.
Step 3: Solve the quadratic equation to find the solutions.
Step 4: Check if the value of the solution is valid and reject invalid values.

Eg. 10	The difference between two numbers is 6 and their product is 247 . Find the two numbers.	
Solution	Let the smaller number be x. Then the larger number would be $x+6$. $\begin{aligned} x(x+\ldots) & =247 \\ x^{2}+\ldots x-247 & =0 \\ (x-\ldots)(x+\ldots) & =0 \\ x & =\ldots \text { or }- \end{aligned}$ The two numbers are (13, \qquad) or (- \qquad , -19)	Step 1 Step 2 Step 3
Eg. 11	The length of a rectangle is 6 cm longer than its width. The area of the rectangle is $16 \mathrm{~cm}^{2}$. Find the length of the rectangle.	
Solution	Let the length be x. Then the width would be $\begin{aligned} & x-6 . \\ & x\left(x-_\right)=16 \\ & x^{2}-_\quad x-16=0 \\ & \left(x-_\right)(x+\ldots)=0 \\ & x=_\mathrm{cm}(x<0 \text { is rejected }) \end{aligned}$	

Eg. 12	The speed of the water current is $x \mathrm{~km} / \mathrm{hr}$. The speed of a boat in still water is $x^{2} \mathrm{~km} / \mathrm{hr}$. After 1.5 hours upstream and 1 hour downstream, the boat has moved 26 km . a) Write an equation in x b) Find x (correct to 2 dp)	
Solution	a) Total distance $=$ distance travelled upstream + distance travelled downstream Distance $=$ speed \times time By (1) and (2): $\begin{aligned} & 26=\left(x^{2}-\ldots\right)(1.5)+\left(x^{2}+\ldots\right)(1) \\ & 2.5 x^{2}-\ldots x-26=0 \\ & 5 x^{2}-x-\ldots=0 \end{aligned}$ b) $x=\frac{1 \pm \sqrt{(-\ldots)^{2}-4(5)\left(__\right)}}{2\left(_\right)}$ $\mathrm{x}=\ldots \mathrm{km} / \mathrm{hr}(x<0 \text { is rejected })$	Step 2, the key equation. Step 2 Step 3 Step 4.

4. Nature of roots

4.1 Discriminant and the number of roots of a quadratic equation

The discriminant, Δ (read as delta), is defined as

$$
\Delta=b^{2}-4 a c
$$

Its value tells the number of distinct real roots of a quadratic equation.
$\because x=\frac{-b \pm \sqrt{\Delta}}{2 a}=-\frac{b}{a} \pm \frac{\sqrt{\Delta}}{2 a}$,
$\therefore \quad \Delta>0 \quad \Leftrightarrow \quad 2$ distinct real roots
$\Delta=0 \quad \Leftrightarrow \quad 2$ equal real roots or one distinct real root
$\Delta<0 \Leftrightarrow$ no real root

Eg. 13	Determine the nature of the roots of a) $x^{2}+2 x-1=0$ b) $x^{2}+2 x=0$ c) $x^{2}+2 x+1=0$ d) $x^{2}+2 x+2=0$
Solution	a) $\Delta=2^{2}-4\left(__\right)\left(-__\right)=_>$ 2 real roots b) $\Delta=2^{2}-4\left(_\right)\left(_\right)=_>_$ 2 real roots c) $\Delta=2^{2}-4\left(_\right.$_ $)\left(_\right)=0$ equal root d) $\Delta=2^{2}-4\left(__\right)\left(_\right)=-_<0$ no real root

4.2 The shape of a quadratic graph

If we plot $y=a x^{2}+b x+c$, then we will have two cases:

$a>0$, the graph open upwards	$a<0$, the graph open downwards

The roots of $a x^{2}+b x+c=0$ are the x-values of the points with $y=0$.
\Rightarrow the roots of $a x^{2}+b x+c=0$ are the x-intercepts of the graph $y=a x^{2}+b x+c$
\Rightarrow the roots $a x^{2}+b x+c=0$ can be read from the graph $y=a x^{2}+b x+c$.

Example: Read from the graph to fill in the following table.

Condition	$y>0$	$y=0$
Value of x	$x>\quad$ or $x<$,
Condition	$x^{2}-4 x+3<0$	$x^{2}-4 x+3=0$
Value of x	$<x<$,

4.3 Discriminant and the number of x-intercepts of the quadratic graph

Because each x-intercept is a root, we have

	$\Delta>0 \Leftrightarrow$ two x-intercepts of the quadratic graph	$\Delta=0 \Leftrightarrow$ one x-intercep of the quadratic graph	$\Delta<0 \Leftrightarrow$ no x-intercept of the quadratic graph
$a>0$			
$a<0$			

