Unit 7: Graphical Method and Bisection Method

Learning Objectives

Students should be able to

- I Use graphical method to solve an equation to desired accuracy
- I Use bisection method to solve an equation to desired accuracy

1. Introduction

There are equations that can be solved exactly. For example, $ax^2 + bx + c = 0$ can be solved for any values of a, b and c. On the other hand, there are lots of equations that cannot be solved by algebraic methods. For example, $x^5 - 2x^4 + 3x^3 - 4x^2 + 5x - 6 = 0$ cannot be solved exactly. The equation $2x + 1 = 3\tan x$ is another example.

In here, we introduce 2 methods to solve equations. Then we shall extend the method to solve simultaneous equations.

2. Graphical Method

Aim: To solve f(x) = 0 in a given interval of a < x < b

How:

- Define y = f(x) and tabulate a table of (x, y). We need about 10 points.
- plot the points and join them *smoothly*
- find the points that y = 0
- the corresponding values of x are the roots of f(x) = 0

E. g. 1	Solve $x^3 - 2x^2 + 3x - 1 = 0$ by graphical method in the interval -1 to 1 (correct
	to 1dp).

Solution:

Let $y = x^3 - 2x^2 + 3x - 1$

х	-1	-0.8	-0.6	-0.4	-0.2	0	0.2	0.4	0.6	0.8	1
y											

[Plot your graph on graph paper and paste it on this page]

The root is at x =

Magnification:

We may increase the accuracy of the roots.

E. g. 2 Use the results of the last example, find the root with 2dp accuracy.

Solution:

The root is in between 0.35 to 0.45

Х	0.35	0.36	0.37	0.38	0.39	0.4	0.41	0.42	0.43	0.44	0.45
V											

[Plot your graph on graph paper and paste it on this page]

The root is at x =____ (2 dp)

• By applying magnification, we may find the location of the root correct to 3dp, 4dp... etc.

This method can be used to find multiple roots.

E. g. 3	Solve $x^3 - x^2 - 4x - 1 = 0$ by graphical method in the interval -2 to 3 (correct
	to 1dp).

Solution:

Let $y = x^3 - x^2 - 4x - 1$

	/	• • • • • • • • • • • • • • • • • • • •										
	Х	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2	2.5	3
ſ	У											

[Plot your graph on graph paper and paste it on this page]

The roots are _____, -___ and ____

Bisection Method

The basic idea:

If f(a) > 0 and f(b) < 0 (or vice versa), there is a root between a and b. If we approximate the root by the value of $\frac{a+b}{2}$, the precision of the root will be $\frac{b-a}{2}$. By making a and b closer and closer, we have a better and better approximation of the true root.

How:

- 1. Calculate $c = \frac{a+b}{2}$ and f(c)
- 2. If the sign of f(a) = the sign of f(c), replace a by c; If the sign of f(b) = the sign of f(c), replace b by c.
- 3. precision = $\frac{b-a}{2}$. If the current precision is not good enough, go to step 1
- 4. Use the values of f(a) and f(b) to choose the root. Choose the one that is closer to zero.

E. g. 4 Solve $x^3 - 2x^2 + 3x - 1 = 0$ by bisection method in the interval -1 to 1 (correct to 2dp).

Solution:

Iteration	а	f(a)	b	f(b)	precision
	-1		1		
1					1
2					0.5
3					
4					0.125
5					0.0625
6					
7					0.015625
8					

x = _____

• There may be many roots between a and b, bisection method can only find one of them

E. g. 5 Solve $x^3 - x^2 - 4x - 1 = 0$ by bisection method in the interval -2 to 3 (correct to 2dp).

Iteration	a	f(a)	h	f(b) precision
Heration	а	f(a)	υ	<i>J(b)</i> precision
	-2		3	
1				
2				
3				0.625
4				0.3125
5				
6				0.078125
7				0.039063
8				
				0.009766

x = _____