Unit 7 : Graphical Method and Bisection Method

Learning Objectives

Students should be able to

I Use graphical method to solve an equation to desired accuracy
I Use bisection method to solve an equation to desired accuracy

1. Introduction

There are equations that can be solved exactly. For example, $a x^{2}+b x+c=0$ can be solved for any values of a, b and c. On the other hand, there are lots of equations that cannot be solved by algebraic methods. For example, $x^{5}-2 x^{4}+3 x^{3}-4 x^{2}+5 x-6=0$ cannot be solved exactly. The equation $2 x+1=3 \tan x$ is another example.

In here, we introduce 2 methods to solve equations. Then we shall extend the method to solve simultaneous equations.

2. Graphical Method

Aim: To solve $f(x)=0$ in a given interval of $a<x<b$
How:

- Define $\mathrm{y}=f(x)$ and tabulate a table of (x, y). We need about 10 points.
- plot the points and join them smoothly
- find the points that $y=0$
- the corresponding values of x are the roots of $f(x)=0$

E. g. 1	Solve $x^{3}-2 x^{2}+3 x-1=0$ by graphical method in the interval -1 to 1 (correct to 1 dp$).$

Solution:

Let $y=x^{3}-2 x^{2}+3 x-1$

x	-1	-0.8	-0.6	-0.4	-0.2	0	0.2	0.4	0.6	0.8	1
y											

[Plot your graph on graph paper and paste it on this page]

The root is at $x=$

Magnification:

We may increase the accuracy of the roots.

E. g. 2	Use the results of the last example, find the root with 2dp accuracy.

Solution:

The root is in between 0.35 to 0.45

x	0.35	0.36	0.37	0.38	0.39	0.4	0.41	0.42	0.43	0.44	0.45
y											

[Plot your graph on graph paper and paste it on this page]

The root is at $x=$ \qquad (2 dp)

- By applying magnification, we may find the location of the root correct to $3 \mathrm{dp}, 4 \mathrm{dp} .$. . etc.

This method can be used to find multiple roots.

E. g. 3	Solve $x^{3}-x^{2}-4 x-1=0$ by graphical method in the interval -2 to 3 (correct to 1 dp).

Solution:

Let $y=x^{3}-x^{2}-4 x-1$

x	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2	2.5	3
y											

[Plot your graph on graph paper and paste it on this page]

The roots are - \qquad and \qquad

Bisection Method

The basic idea:
If $f(a)>0$ and $f(b)<0$ (or vice versa), there is a root between a and b. If we approximate the root by the value of $\frac{a+b}{2}$, the precision of the root will be $\frac{b-a}{2}$. By making a and b closer and closer, we have a better and better approximation of the true root.

How:

1. Calculate $c=\frac{a+b}{2}$ and $f(c)$
2. If the sign of $f(a)=$ the sign of $f(c)$, replace a by c; If the sign of $f(b)=$ the sign of $f(c)$, replace b by c.
3. precision $=\frac{b-a}{2}$. If the current precision is not good enough, go to step 1
4. Use the values of $f(a)$ and $f(b)$ to choose the root. Choose the one that is closer to zero.
E. g. 4 Solve $x^{3}-2 x^{2}+3 x-1=0$ by bisection method in the interval -1 to 1 (correct to 2 dp).

Solution:

Iteration	a	$f(a)$	b	$f(b)$	precision
	-1		1		
1					1
2					0.5
3					
4					0.125
5					0.0625
6					
7					0.015625
8					

$x=$ \qquad

- There may be many roots between a and b, bisection method can only find one of them
E. g. 5 Solve $x^{3}-x^{2}-4 x-1=0$ by bisection method in the interval -2 to 3 (correct to 2 dp).

Iteration	a	$f(a)$	b	$f(b)$	precision
	-2		3		
1					
2					
3				0.625	
4				0.3125	
5				0.078125	
6				0.039063	
7					
8				0.009766	

$x=$ \qquad

