Unit 9 : Proportion and Variation

Learning Objectives

Students should be able to
I apply the k-method to solve various problems concerning ratio and proportion
I state the meaning of direct variation
I solve problems involving direct variation
I state the meaning of inverse variation
I solve problems involving inverse variation
I describe joint variation as a product of several quantities
| solve problems involving joint variation
I express partial variation as a sum of several quantities
| solve problems involving partial variations

1. Proportion

If $a: b=c: d$, then a, b, c and d are said to be in proportion.

Example 1

$x, 4,5$ and 8 are in proportion, find x.

Solution

$\frac{x}{4}=\frac{5}{8}$ is equivalent to $8 x=4 \times 5$,
so $\quad x=2.5$.

Example 2

Given $\frac{a}{b}=\frac{c}{d}$, show that
(a) $\frac{a+b}{b}=\frac{c+d}{d}$
(b) $\frac{a+b}{a-b}=\frac{c+d}{c-d}$

Solution

Let $\quad a=c k$
$b=d k$ for some constant k
(a) $\frac{a+b}{b}=\frac{c k+d k}{d k}=\frac{c+d}{d}$
$\therefore \frac{a+b}{b}=\frac{c+d}{d}$
(b) $\frac{a+b}{a-b}=$

$$
\therefore \frac{a+b}{a-b}=\frac{c+d}{c-d}
$$

Example 3

(a) If $\frac{p}{q}=\frac{r}{s}$, show that $\frac{p-q}{p+q}=\frac{r-s}{r+s}$
(b) Hence solve the equation $\frac{4 y^{2}+y-2}{4 y^{2}-y-2}=\frac{y+2}{y-2}$.

Solution: (a) Let $\frac{p}{q}=\frac{r k}{s k}, p=k, r=k$

$$
\text { L.H.S. }=\frac{p-q}{p+q}=
$$

$$
=
$$

= R.H.S.
(b) $\frac{\left(4 y^{2}+y-2\right)-\left(4 y^{2}-y-2\right)}{\left(4 y^{2}+y-2\right)+\left(4 y^{2}-y-2\right)}=\frac{(y+2)-(y-2)}{(y+2)+(y-2)}$

$$
\begin{aligned}
\frac{2 y}{y^{2}-}= & \\
4 y^{2} & =y^{2}-16 \\
16 & =y^{2} \\
4 & =y^{2} \\
y & = \pm
\end{aligned}
$$

2. Review on Direct Variation

If two quantities x and y are so varying that the ratio of y to x is always a constant, then y is said to vary directly as x. The relation may be written $y \propto x$ and read as ' y is proportional to x ' or ' y varies directly as x '.

Hence if $y \propto x$
then $\frac{y}{x}=k \quad(k=$ constant $)$
or $y=k x$.

When y varies directly as x, the equation between y and x is $y=k x$ where k is the variation constant. The graph of \boldsymbol{y} against \boldsymbol{x} is a straight line passing through the origin and its slope represents the variation constant k.

Example 4

The area of an isosceles right-angled triangle varies directly as square of the length of the side. If the area is $18 \mathrm{~cm}^{2}$ when the length of the side is 6 cm ,
(a) express the area in terms of the length of the side;
(b) find the area of an isosceles right-angled triangle with side 5 cm .

Solution

(a) Let A be the area of the triangle and l be the length of the side.

Since A varies directly as the square of the length, $A \propto l^{2}$ and

$$
A=k l^{2}
$$

When $l=6 \mathrm{~cm}, A=18 \mathrm{~cm}^{2}$,

$$
=k(\quad)^{2}
$$

$$
k=
$$

Hence $A=\frac{1}{2} l^{2}$
(b) When $l=5$,

$$
A=\frac{1}{2}(\quad)^{2}=\frac{}{2}=\mathrm{cm}^{2}
$$

3. Review on Inverse Variation

A quantity y is said to vary inversely as or is inversely proportional to another quantity x if y varies directly as $\frac{1}{x}$.

In symbol, if $y \propto \frac{1}{x}$ then $y=\frac{k}{x}$ where k is the variation constant, or $x y=\mathrm{k}$.

Hence when y varies inversely as x, the product $x y$ is a constant

When y varies inversely as x, the equation between y and x is $y=k \frac{1}{x}$. The graph of y against $\frac{1}{x}$ is a straight line passing through the origin and its slope represents the variation constant k.

Example 5

If y varies inversely as x and $y=4$ when $x=30$.
(a) Find the relation between y and x.
(b) Find the value of y when $x=3$.

Solution

(a) Since $y \propto \frac{1}{x}$, we can write $y=k \frac{1}{x}$, where k is the variation constant. It is given that when $x=30, y=4$

$$
\begin{aligned}
& 4=k \frac{1}{1} \\
& k=
\end{aligned}
$$

Hence the relation between x and y is $y=\frac{-}{x}$.
(b) When $x=3, \quad y=(\quad)=$

4. Joint Variation

A quantity is said to vary jointly as several other quantities, if it varies as the product of these quantities.
z varies jointly as x and y, if $z=k x y$ where k is the variation constant.
A joint variation can also be a combination of direct and inverse variations. If a varies directly as b and inversely as c, then $a=k \frac{b}{c}$ where k is the variation constant.

Example 6

w varies jointly as u and \sqrt{v}. If $w=9$ when $u=3$ and $v=36$, find
(a) the variation constant
(b) $\quad w$ when $u=10$ and $v=81$.

Solution

(a) $\quad w \propto u \sqrt{v}$

$$
\begin{aligned}
& w=u \sqrt{v} \quad \text { where } k \neq 0 \\
& 9=3 \sqrt{36} \\
& k=1
\end{aligned}
$$

(b) $\quad \operatorname{From}(\mathrm{a}), w=\frac{1}{2} u \sqrt{v}$

$$
\mathrm{w}=\frac{1}{2}(\quad) \sqrt{81}
$$

$$
=
$$

5. Partial Variation

A quantity z may be composed of several parts. One of the parts varies as another quantity x and a second part varies as a third quantity y and so on. We call this kind of variation a partial variation and the equation involves a sum of several parts.

For example, if z varies partly directly as x and partly directly as y, then

$$
z=k_{1} x+k_{2} y
$$

where k_{1} and k_{2} are variation constants.

If z is partly constant and partly varies directly as x, then

$$
z=k_{1}+k_{2} x
$$

where k_{1} and k_{2} are variation constants.

Example 7

The profit y of an item is partly constant and partly varies directly as the number of items sold x. When $x=1$, the profit y is 15 . When $x=100, y=213$. Find
(a) the relation between the number of items sold x and the profit y,
(b) the profit when the number of items sold is 5 .

Solution

Since y is partly constant and partly varies directly as x,
$y=k_{1}+k_{2} x$

$$
\text { When } x=1, y=15
$$

$$
\begin{align*}
& 15=k_{1}+k_{2}(\quad) \\
& 15=k_{1}+k_{2} \ldots \tag{1}
\end{align*}
$$

When $x=100, y=213$,

$$
=k_{1}+k_{2}(\quad)
$$

$$
=k_{1}+\quad k_{2} \ldots
$$

$$
198=k_{2}
$$

$$
k_{2}=
$$

Sub. k_{2} into (1), $\quad 15=k_{1}+$ $k_{1}=$
Hence $y=13+x$
When $x=5, y=13+2(\quad)=$.

Example 8

The average cost per head of providing a school lunch is partly constant and partly varies inversely as the number of students taking the lunch. When 144 students take lunch, the average cost is $\$ 17$ per head. The average cost becomes $\$ 16$ when the number of students rises to 168 .
(a) Find an equation connecting the average cost per head and the number of students taking lunch.
(b) How many students would be required to reduce the cost of lunch to $\$ 14$?
(c) If 1000 students would take lunch, a rebate of $\$ 500$ would be given to the school. Calculate the actual ave rage cost per head.

Solution

(a) $c=a+\frac{b}{x}$
where cost = average cost per head

$$
x=\text { number of students }
$$

$$
17=a+\frac{b}{-----(1)}
$$

$$
16=a+\frac{b}{-----(2)}
$$

$$
(1)-(2), 1=b\left(\frac{1}{144}-\frac{1}{}\right)
$$

$$
\mathrm{b}=
$$

$$
\mathrm{a}=
$$

$$
\therefore c=10+\frac{}{x}
$$

(b)

$$
=10+\frac{100}{x}
$$

$$
\text { number of students } \mathrm{x}=252
$$

(c)

Taking rebate $\$ 500$ into account, the actual average cost per head

$$
\begin{aligned}
& =\$ 11.01-\$ 0 . \\
& =\$
\end{aligned}
$$

$$
\begin{aligned}
& \text { cost for } 1000=10+\frac{}{1000} \\
& =\$ 11.01
\end{aligned}
$$

