Answers: (1991-92 HKMO Heat Events)Created by: Mr. Francis Hung Last updated: 13 April 2007

91-92 Individual	1	100	2	3	3	4	4	60	5	20
	6	С	7	±10	8	4	9	5	10	16
	11	12	12	35	13	1620	14	32	15	128
	16	3	17	10	18	$\frac{9}{10}$	19	8	20	$-\frac{4}{3}$
91-92	1	102	2	-1	3	52	4	191	5	5
Group	6	10	7	42	8	3	9	1	10	7

Individual

12. In the figure, AB = AC = 2BC and BC = 20 cm. If *BF* is perpendicular t *AC* and *AF* = *x* cm, find *x*

Let $\angle ABC = \theta = \angle ACB$ (base $\angle s$ isos. \triangle) AB = AC = 40 $\cos \theta = \frac{\frac{1}{2}BC}{AC} = \frac{10}{40} = \frac{1}{4}$ $CF = BC\cos\theta = 20 \times \frac{1}{4} = 5$ AF = AC - CF = 40 - 5 = 35 cmx = 35

Group

In the figure, BD = DC, AP = AQ. If AB = 13 cm, AC = 7 cm and AP = x cm, find x. 6. Α From D, draw a parallel line DE // QA $\therefore D$ is the mid-point of *BC*. $\therefore BE = EA$ (equal intercepts) $= 13 \div 2 = 6.5$ cm $DE = 7 \div 2 = 3.5$ cm (mid-point theorem on $\triangle ABC$) 7 cm $\angle APQ = \angle AQP$ (base $\angle s$. isos. $\triangle, AP = AQ$) 13 cm $= \angle EDP$ (corr. $\angle s, AQ // ED$) $\therefore PE = DE$ (side opp. equal \angle s) P= 3.5 cmAP = AE + EP = 6.5 + 35 = 10 cm D

B

Answers: (1991-92 HKMO Heat Events)Created by: Mr. Francis Hung Last updated 12 April 2007

$$\frac{\frac{1}{3}AC\sin \angle ACN}{BC\sin \angle BCN} = \frac{MP}{BP}$$
By (3), $\frac{1}{3} \times \frac{1}{2} = \frac{MP}{BP} \Rightarrow \frac{MP}{BP} = \frac{1}{6}$(4)
By (2) and (4), $MP : PR : RB = 1 : 3 : 3$
By symmetry $NQ : QP : PC = 1 : 3 : 3$ and $NR : RQ : QA = 1 : 3 : 3$
Let *s* stands for the area, *x* = area of $\triangle ABC$.
SAABL = $S_{ABCM} = S_{AACN} = \frac{x}{3}$
and $S_{AANQ} = S_{ABLR} = S_{ACMP} = \frac{1}{7} \times \frac{x}{3} = \frac{x}{21}$ (:: $NQ = QC = 1 : 6 \Rightarrow NQ = \frac{1}{7} CN$)
The total area of $\triangle ABC$: $x = S_{ABLR} + S_{ABCM} + S_{AACN} + S_{APQR} - 3 S_{AANQ}$
 $x = \frac{x}{3} + \frac{x}{3} + \frac{x}{3} + 6 - 3 \times \frac{x}{21}$
 $0 = 6 - \frac{1}{7}x$
 $x = 42$
method 3 (Vector method)
Let $\overline{AC} = \vec{c}$, $\overline{AB} = \vec{b}$
Suppose $BR : RM = r : s$
By ratio formula, $\overline{AR} = \frac{r(\frac{2}{3}\vec{c}) + s\vec{b}}{r + s}$; $\overline{AL} = \frac{\vec{c} + 2\vec{b}}{3}$
 $\therefore AR //AL : \therefore \frac{s}{\frac{2}{3}} = \frac{\frac{3}{1}(r+s)}{\frac{1}{3}}$ (their coefficients are in proportional)
 $3s = 4r$
 $r : s = 3 : 4$
Suppose $BP : PM = m : n$, let $\overline{CB} = \vec{a}$
By ratio formula, $\overline{CP} = \frac{n\vec{a} + m(-\frac{1}{3}\vec{c})}{m + n}$; $\overline{CN} = \frac{\vec{a} + 2(-\vec{c})}{3}$
 $\therefore CP //CN : \frac{n}{\frac{m+n}{3}} = -\frac{\frac{m}{3(m+n)}}{-\frac{2}{3}}$ (their coefficients are in proportional)
 $6n = m$
 $m : n = 6 : 1$
 $\therefore r : s = 3 : 4$ and $m : n = 6 : 1$
 $\therefore MP : PR : RB = 1 : 3 : 3$
By symmetry $NQ : QP : PC = 1 : 3 : 3$ and $NR : RQ : QA = 1 : 3 : 3$
By symmetry $NQ : QP : PC = 1 : 3 : 3$ and $NR : RQ : QA = 1 : 3 : 3$