
Answers: (1997-98 HKMO Heat Events)Created by: Mr. Francis Hung Last updated: 13 April 2007

97-98 Individual	1	2	2	40	3	-12	4	3	5	$-\frac{1}{2}$
	6	466	7	19	8	3	9	2	10	744
97-98 Group	1	2	2	12	3	27	4	64	5	14
	6	14	7	$-\frac{1}{2}$	8	1	9	20	10	19

1998 Group 5

In the figure, the area of the parallelogram *ABCD* is 120, *M* and *N* are the mid-points of *AB* and *BC* respectively. Find the area of *BQPM*.

Produce *DM* and *CB* to meet at *R*. Let BC = 2a. Then BN = NC = a (mid-point) $\Delta AQD \sim \Delta BQN$ (equiangular) BQ = BN

$$\frac{BQ}{QD} = \frac{BN}{AD}$$
 (ratio of sides, ~ Δ 's)
= $\frac{1}{2}$ (N = mid-point, opp. sides of //-gram)
Area of $\Delta ABD = \frac{1}{2} \times 120 = 60$
Area of $\Delta AQD = \frac{2}{3} \times \Delta ABD = 40$

 $\frac{\text{Area of } \Delta \text{BQN}}{\text{Area of } \Delta \text{AQD}} = \left(\frac{BN}{AD}\right)^2 = \frac{1}{4}$ $\therefore \text{Area of } \Delta BQN = \frac{1}{4} \times 40 = 10 \dots (1)$ As *M* is the mid-point, $\triangle AMD \cong \triangle BMR$ (ASA) \Rightarrow *RM* = *MD* (corr. sides $\cong \Delta$'s)(2) Also $\triangle APD \sim \triangle NPR$ (equiangular) $\frac{DP}{PR} = \frac{AD}{NR}$ (ratio of sides, ~ Δ 's) $=\frac{2a}{3a}=\frac{2}{3}$ (opp. sides of //-gram, corr. sides $\cong \Delta$'s)(3) Combine (2) and (3) $PD = \frac{2}{5}RD; MD = \frac{1}{2}RD$ $MP = MD - PD = \frac{1}{2}RD - \frac{2}{5}RD = \frac{1}{10}RD$ Area of $\triangle AMD = \frac{1}{4} \times 120 = 30$ By (4): Area of $\triangle AMP = \frac{1}{5} \times \text{Area of } \triangle AMD = \frac{1}{5} \times 30 = 6$ (5) Area of $\triangle ABN = \frac{1}{4} \times 120 = 30$: Area of BQPM = Area of $\triangle ABN$ – Area of $\triangle AMP$ – Area of $\triangle BQN$ = 30 - 6 - 10 = 14 (by (1) and (5))