
Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 3 Database Fundamental

 Page 1 of 18

Database technology is not only improving the daily operations of organizations but
also the quality of decisions that affect our lives. Databases contain a flood of data
about many aspects of our lives: consumer preferences, telecommunications usage,
credit history, television viewing habits, and so on.

Database technology helps to summarize this mass of data into useful information
for making decision. Management uses information gleaned from databases to make
long-range decisions such as investing in plants and equipment, locating stores,
adding new items to inventory, and entering new businesses.

This chapter provides a starting point for your exploration of Database Technology. It
surveys database characteristics, database management system features, system
architectures, and human roles in managing and using databases. This chapter
provides a broad picture of database technology.

3.1 DATABASE CHARACTERISTICS

Every day, businesses collect mountains of facts about persons, things, and events
such as credit card numbers, bank balances, and purchase amounts. Databases
contain these sorts of simple facts as well as unconventional information like
photographs, fingerprints, product videos, and book abstracts. With the proliferation
of the Internet and the means to capture data in computerized form, a vast amount of
data is available at the click of a mouse button.
With so much data available, organizing these data for ease of retrieval and
maintenance is paramount. Thus, managing databases has become a vital task in
organizations.

Database a collection of persistent data that can be shared and
interrelated.

Before learning about managing databases, we must first understand some
important properties of databases:

Persistent means that data reside on stable storage such as a magnetic disk. For
example, organizations need to retain data about customers, suppliers, and
inventory on stable storage because these data are repetitively used. A variable in a
computer program is not persistent because it resides in main memory and
disappears after the program terminates. Persistency does not mean that data last
forever. When data are no longer relevant (such as a supplier going out of
business), they are removed or archived.

Persistency depends on relevance of intended usage. For example, the mileage you
drive for work is important to maintain if you are self-employed. Likewise, the amount
of your medical expenses is important if you can itemize your deductions.

Because storing and maintaining data is costly, only data likely to be
relevant to decisions should be stored.

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 3 Database Fundamental

 Page 2 of 18

“Shared” means that a database can have multiple uses and users. A database
provides a common memory for multiple functions in an organization. For example, a
personnel database can support payroll calculations, performance evaluations,
government reporting requirements, and so on. Many users can use a database at
the same time. For example, many customers can simultaneously make airline
reservations. Unless two users are trying to change the same part of the database at
the same time, they can proceed without waiting on each other.

Interrelated means that data stored as separate units can be connected to provide a
whole picture. For example, a customer database relates customer data (name,
address, . . .) to order data (order number, order date . . .) to facilitate order
processing. Databases contain both entities and relationships among entities. An
entity is a cluster of data usually about one topic that can be accessed together. An
entity can denote a person, place, thing, or event. For example, a personnel
database contains entities such as employees, departments, and skills as well as
relationships showing employee assignments to departments, skills possessed by
employees, and salary history of employees. A typical business database may have
hundreds of entities and relationships.

Figure 1 Depiction of a simplified university database

To depict these characteristics, let us consider a number of databases. A simplified
university database contains data about students, faculty, courses, course offerings,
and enrollments. The database supports procedures such as registering for classes,
assigning faculty to course offerings, recording grades, and scheduling course
offerings. Relationships in the university database support answers to questions
such as:

• What offerings are available for a course in a given academic period?
• Who is the instructor for an offering of a course?
• What students are enrolled in an offering of a course?

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 3 Database Fundamental

 Page 3 of 18

Figure 2 Depiction of a simplified water utility database

Next, let us consider a water utility database as depicted in Figure 2. The primary
function of a water utility database is billing customers for water usage. Periodically,
a customer's water consumption is measured from a meter and a bill is prepared.
Many aspects can influence the preparation of a bill such as a customer's payment
history, meter characteristics, type of customer (low income, renter, homeowner,
small business, large business, etc.), and billing cycle. Relationships in the water
utilities database support answers to questions such as:

• What is the date of the last bill sent to a customer?
• How much water usage was recorded when a customer's meter was last read?
• When did a customer make his/her last payment?

Figure 3 Depiction of a simplified hospital database

Finally, let us consider a hospital database as depicted in Figure 3. The hospital
database supports treatment of patients by physicians. Physicians make diagnoses
and prescribe treatments based on symptoms. Many different health providers read
and contribute to a patient's record. Nurses are responsible for monitoring symptoms
and providing medication. Food workers prepare meals according to a treatment
plan. Physicians prescribe new treatments based on the results of previous
treatments and patient symptoms. Relationships in the database support answers to
questions such as:

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 3 Database Fundamental

 Page 4 of 18

• What are the most recent symptoms of a patient?
• Who prescribed a given treatment of a patient?
• What diagnosis did a doctor make for a patient?

These simplified databases lack many kinds of data found in real databases. For
example, the simplified university database does not contain data about course
prerequisites and classroom capacities and locations. Real versions of these
databases would have many more entities and additional uses. Nevertheless, these
simple databases have the essential characteristics of business databases:
persistent data, multiple users and uses, and multiple entities connected by
relationships.

3.2 FEATURES OF DBMS

 A database management system (DBMS) is a collection of software that supports
the creation, use, and maintenance of databases. Initially, DBMSs provided efficient
storage and retrieval of data. Due to marketplace demands and product innovation,
DBMSs have evolved to provide a broad range of features for data acquisition,
storage, dissemination, maintenance, retrieval, and formatting. The evolution of
these features has made DBMSs rather complex. It can take years of study and use
to master a particular DBMS. Because DBMSs continue to evolve, you must
continually update your knowledge.

Database Management System (DBMS) a collection of components that
support data acquisition, dissemination, maintenance, retrieval, and
formatting.

To provide insight about features that you will encounter in commercial DBMSs,
Table 1 (appendix) summarizes a common set of features. The remainder of this
section presents examples of these features. Some examples are drawn from
Microsoft Access, a popular desktop DBMS.

Database Definition

To define a database, the entities and relationships must be specified. In most
commercial DBMSs, tables store collections of entities. Table 2 (in appendix) has a
heading row (first row) showing the column names and a body (other rows) showing
the contents of the table. Relationships indicate connections among tables. For
example, the relationship connecting the student table to the enrollment table shows
the course offerings taken by each student.

Table a named, two-dimensional arrangement of data, consists of
heading part and a body part.

Most DBMSs provide several tools to define databases. The Structured Query
Language (SQL) is an industry standard language supported by most DBMSs. SQL
can be used to define tables, relationships among tables, integrity constraints (rules

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 3 Database Fundamental

 Page 5 of 18

that define allowable data), and authorization rights (rules that restrict access to
data).

Figure 4 Table definition window in Microsoft Access

Figure 5 Relationship definition window in Microsoft Access

In addition to SQL, many DBMSs provide graphical, window-oriented tools. Figures 4
and 5 depict graphical tools for defining tables and relationships. Using the Table
Definition window in Figure 4, the user can define properties of columns such as the
data type and field size. Using the Relationship Definition window in Figure 6,
relationships among tables can be defined. After defining the structure, a database
can be populated. The data in Table 2 (in appendix) should be added after the Table
Definition window and Relationship Definition window are complete.

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 3 Database Fundamental

 Page 6 of 18

Figure 6 Query design window in Microsoft Access

SQL an industry standard database language that includes statements
for database definition, database manipulation, and database control.

Nonprocedural Access

The most important feature of DBMSs is the ability to answer queries. A query is a
request for data to answer a question. For example, the user may want to know
customers having large balances or products with strong sales in a particular region.
Nonprocedural access allows users with limited computing skills to submit queries.
The user specifies what parts of a database to retrieve, not the details of how
retrieval occurs. The "how" part involves coding complex procedures with loops.

Nonprocedural Database Language a language such as SQL that
allows you to specify what part of a database to access rather than to
code a complex procedure. Nonprocedural languages do not include
looping statements.

Nonprocedural languages do not have looping statements (for, while, and so on)
because only the "what" part is specified.

Nonprocedural access can reduce the number of lines of code by a factor of 100 as
compared to procedural access. Because a large part of business software involves
data access, nonprocedural access can provide a dramatic improvement in software
productivity.

To appreciate the significance of nonprocedural access, consider an analogy to
planning a vacation. You specify your destination, travel budget, length of stay, and
departure date. These facts indicate the "what" of your trip. To specify the "how" of
your trip, you need to indicate many more details such as the best route to your
destination, the most desirable hotel, ground transportation, and so on. Your

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 3 Database Fundamental

 Page 7 of 18

planning process is much easier if you have a professional to help with these
additional details. Like a planning professional, a DBMS performs the detailed
planning process to answer queries expressed in a nonprocedural language.

Most DBMSs provide more than one tool. For nonprocedural access, the SELECT
statement of SQL, described provides a nonprocedural way to access a database.
Most DBMSs also provide graphical tools to access databases. Figure 6 depicts a
graphical tool available in Microsoft Access. To pose a query to the database, a user
only has to indicate the required tables, relationships, and columns. Access is
responsible for knowing how to retrieve the requested data. Table 3 (in appendix)
shows the result of executing the query in Figure 6.

Application Development and Procedural Language Interface

Most DBMSs go well beyond simply accessing data. Graphical tools are provided for
building complete applications using forms and reports. Data entry forms provide a
convenient way to enter and edit data, while reports enhance the appearance of data
that are displayed or printed. The form in Figure 7 can be used to add new course
assignments for a professor and to change existing assignments. The report in
Figure 8 uses indentation to show courses taught by faculty in various departments.
The indentation style can be easier to view than the tabular style shown in Table 3.

Figure 7 Microsoft Access form for assigning courses to faculty

Many forms and reports can be developed with a graphical tool without detailed
coding. For example, Figures 7 and 8 were developed without coding.

Figure 8 Microsoft Access report faculty workload

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 3 Database Fundamental

 Page 8 of 18

Nonprocedural access makes form and report creation possible without extensive
coding. As part of creating a form or report, the user indicates the data requirements
using a nonprocedural language (SQL) or graphical tool. To complete a form or
report definition, the user indicates formatting of data, user interaction, and other
details.

In addition to application development tools, a procedural language interface adds
the full capabilities of a computer programming language.

Procedural Language Interface a method to combine a nonprocedural
language such as SQL with programming language such as COBOL or
visual Basic.

Nonprocedural access and application development tools, though convenient and
powerful, are sometimes not efficient enough or do not provide the level of control
necessary for application development. When these tools are not adequate, DBMSs
provide the full capabilities of a programming language. For example, Visual Basic
for Applications (VBA) is a programming language that is integrated with Microsoft
Access. VBA allows full customization of database access, form processing, and
report generation. Most commercial DBMSs have a procedural language interface
comparable to VBA. For example, Oracle has the language PL/SQL and Microsoft
SQL Server has the language Transact-SQL.

Other Features

Transaction processing enables a DBMS to process large volumes of repetitive
work. A transaction is a unit of work that should be processed reliably without
interference from other users and without loss of data due to failures. Examples of
transactions are withdrawing cash at an ATM, making an airline reservation, and
registering for a course. A DBMS ensures that transactions are free of interference
from other users, parts of a transaction are not lost due to a failure, and transactions
do not make the database inconsistent. Transaction processing is largely a "behind
the scenes" affair.

Transaction Processing reliable and efficient processing of large
volumes of repetitive work. DBMSs ensure that simultaneous users do not
interfere with each other and that failures do not cause lost work.

The user does not know the details about transaction processing other than the
assurances about reliability.

Database tuning includes a number of monitors and utility programs to improve
performance.

Some DBMSs can monitor how a database is used, the distribution of various parts
of database, and the growth of the database. Utility programs can be provided to
reorganize a database, select physical structures for better performance, and repair
damaged parts of a database.

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 3 Database Fundamental

 Page 9 of 18

Transaction processing and database tuning are most prominent on DBMSs that
support large databases with many simultaneous users. These DBMSs are known
as enterprise DBMSs because the databases they support are often critical to the
functioning of an organization.

Enterprise DBMSs usually run on powerful servers and have a high cost. In contrast,
desktop DBMSs running on personal computers and small servers support limited
transaction processing features but have a much lower cost. Desktop DBMSs
support databases used by work teams and small businesses.

Figure 9 Entity relationship diagram (ERD) created with Visio Professional

In addition to features provided directly by vendors of DBMSs, third-party software is
also available for many DBMSs. In most cases, third-party software extends the
features available with the database software. For example, many third-party
vendors provide advanced database design tools that extend the database definition
and tuning capabilities provided by DBMSs. Figure 9 shows a database diagram (an
entity relationship diagram) created with Visio Professional, a tool for database
design. The ERD in Figure 9 can be converted into the tables supported by most
commercial DBMSs. In some cases, third-party software competes directly with the
database product. For example, third-party vendors provide application development
tools that can be used in place of the ones provided with the database product.

3.3 DEVELOPMENT OF DATABASE TECHNOLOGY AND

MARKET STRUCTURE

The previous section provided a quick tour of the features found in typical DBMSs.
The features in today's products are a significant improvement over just a few years
ago. Database management, like many other areas of computing, has undergone
tremendous technological growth. To provide you a context to appreciate today's
DBMSs, this section reviews past changes in technology and suggests future trends.
After this review, the current market for database software is presented.

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 3 Database Fundamental

 Page 10 of 18

Evolution of Database Technology

Table 4 depicts a brief history of database technology through four generations' of
systems. The first generation supported sequential and random searching, but the
user was required to write a computer program to obtain access. For example, a
program could be written to retrieve all customer records or to just find the customer
record with a specified customer number. Because first-generation systems did not
offer much support for relating data, they are usually regarded as file processing
systems rather than DBMSs. File processing systems can manage only one entity
rather than many entities and relationships managed by a DBMS.

The second-generation products were the first true DBMSs as they could manage
multiple entity types and relationships. However, to obtain access to data, a
computer program still had to be written. Second-generation systems are referred to
as "navigational" because the programmer had to write code to navigate among a
network of linked records. Some of the second-generation products adhered to a
standard database definition and manipulation language developed by the
Committee on Data Systems Languages (CODASYL), a standards organization.

The CODASYL standard had only limited market acceptance partly because IBM,
the dominant computer company during this time, ignored the standard. IBM
supported a different approach known as the hierarchical data model.

Rather than focusing on the second-generation standard, research labs at
IBM and academic institutions developed the foundations for a new generation of
DBMSs. The most important development involved nonprocedural languages for
database access.

Third-generation systems are known as relational DBMSs because of the foundation
based on mathematical relations and associated operators. Optimization technology
was developed so that access using nonprocedural languages would be efficient.
Because nonprocedural access provided such an improvement over navigational
access, third-generation systems supplanted the second generation. Since the
technology was so different, most of the new systems were founded by start-up
companies rather than by vendors of previous generation products. IBM was the
major exception. It was IBM's weight that led to adoption of SQL as a widely
accepted standard.

Fourth-generation DBMSs are extending the boundaries of database technology to
unconventional data and the Internet. Fourth-generation systems can store and
manipulate unconventional data types such as images, videos, maps, sounds, and
animations. Because these systems view any kind of data as an object to manage,
fourth-generation systems are sometimes called "object-oriented" or "object-
relational." In addition to the emphasis on objects, the Internet is pushing DBMSs to
develop new forms of distributed processing. Most DBMSs now feature convenient
ways to publish static and dynamic data on the Internet. The market for fourth-
generation systems is a battle between vendors of third-generation systems who are
upgrading their products against a new group of systems developed by start-up
companies. So far, the existing companies seem to have the upper hand.

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 3 Database Fundamental

 Page 11 of 18

Current Market for Database Software

According to Dataquest, a division of the Gartner Group, the sales of enterprise
database software reached $7.1 billion in 1998, a 15 percent gain over 1997.
Enterprise DBMSs use mainframe servers running IBM's MVS operating system and
midrange servers running the Unix and Microsoft NT operating systems. Electronic
commerce on the Internet has rejuvenated the market for enterprise database
software. Before the advent of electronic commerce, enterprise DBMSs were
becoming commodities and sales growth was stagnant. Dataquest projects sales of
enterprise DBMSs to reach $10 billion by 2003.

According to Dataquest, five products dominate the market for enterprise database
software as shown in Table 4. Although IBM holds the largest market share, Oracle
dominates in the faster-growing Unix and NT markets. The overall market is very
competitive with the major companies and smaller companies introducing many new
features with each release.

In the market for desktop database software, Microsoft Access dominates at least in
part because of the dominance of Microsoft Office. Desktop database software is
primarily sold as part of office productivity software. With Microsoft Office holding
about 90 percent of the office productivity market, Access holds a comparable share
of the desktop database software market. Other significant products in the desktop
database software market are Paradox, Approach, FoxPro, and FileMaker Pro.

3.4 ARCHITECTURES OF DATABASE MANAGEMENT

SYSTEMS

To provide insight about the internal organization of DBMSs, this section describes
two architectures or organizing frameworks. The first architecture describes an
organization of database definitions to reduce the cost of software maintenance. The
second architecture describes an organization of data and software to support
remote access. These architectures promote a conceptual understanding rather than
indicate how an actual DBMS is organized.

Data Independence and the Three Schema Architecture

In early DBMSs, there was a close connection between a database and computer
programs that accessed the database. Essentially, the DBMS was considered part of
a programming language. As a result, the database definition was part of the
computer programs that accessed the database. In addition, the conceptual meaning
of a database was not separate from its physical implementation on magnetic disk.
The definitions about the structure of a database and its physical implementation
were mixed inside computer programs.

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 3 Database Fundamental

 Page 12 of 18

Data Independence a database should have an identity separate from the
applications (computer programs, forms, and reports) that use it. The
separate identity allows the database definition to be changed without
affecting related applications.

The close association between a database and related programs led to problems in
software maintenance. Software maintenance encompassing requirement changes,
corrections, and enhancements can consume a large fraction of computer budgets.
In early DBMSs, most changes to the database definition caused changes to
computer programs. In many cases, changes to computer programs involved
detailed inspection of the code, a labor-intensive process. This code inspection work
is similar to "year 2000 compliance" where date formats must be changed to four
digits.

Performance tuning of a database was difficult because sometimes hundreds of
computer programs had to be recompiled for every change. Because database
definition changes are common, a large fraction of software maintenance resources
was devoted to database changes. Some studies have estimated the percentage as
high as 50 percent of software maintenance resources.

The concept of data independence emerged to alleviate problems with program
maintenance. Data independence means that a database should have an identity
separate from the applications (computer programs, forms, and reports) that use it.
The separate identity allows the database definition to be changed without affecting
related applications. For example, if a new column is added to a table, applications
not using the new column should not be affected. Likewise if a new table is added,
only applications that need the new table should be affected. This separation should
be even more pronounced if a change only affects physical implementation of a
database. Database specialists should be free to experiment with performance
tuning without worrying about making computer program changes.

Figure 10 Three schema architecture

In the mid 1970s, the concept of data independence led to the proposal of the Three
Schema Architecture depicted in Figure 10. The word schema as applied to
databases means database description. The Three Schema Architecture includes
three levels of database description. The external level is the user level. Each group
of users can have a separate external view (or view for short) of a database tailored
to the group's specific needs.

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 3 Database Fundamental

 Page 13 of 18

Three Schema Architecture anarchitecture for compartmentalizing
database descriptions. The Three Schema architecture was proposed as a
way to achieve data independence.

In contrast, the conceptual and internal schemas represent the entire database. The
conceptual schema defines the entities and relationships. For a business database,
the conceptual schema can be quite large, perhaps hundreds of entity types and
relationships. Like the conceptual schema, the internal schema represents the entire
database. However, the internal schema represents the storage view of the
database whereas the conceptual schema represents the logical meaning of the
database. The internal schema defines files, collections of data on a storage device
such as a hard disk. A file can store one or more entities described in the conceptual
schema.

To make the three schema levels clearer, Table 5 shows differences among
database definition at the three schema levels using examples from the features
described in Section 3.2. Even in a simplified university database, the differences
among the schema levels are clear. With a more complex database, the differences
would be even more pronounced with many more views, a much larger conceptual
schema, and a more complex internal schema.

The schema mappings describe how a schema at a higher level is derived from a
schema at a lower level. For example, the external views in Table 5 are derived from
the tables in the conceptual schema. The mapping provides the knowledge to
convert a request using an external view (for example, HighGPAView) into a request
using the tables in the conceptual schema. The mapping between conceptual and
internal levels shows how entities are stored in files.

DBMSs, using schemas and mappings, ensure data independence. Typically,
applications access a database using a view. The DBMS converts an application's
request into a request using the conceptual schema rather than the view. The DBMS
then transforms the conceptual schema request into a request using the internal
schema. Most changes to the conceptual or internal schema do not affect
applications because applications do not use the lower schema levels. The DBMS,
not the user, is responsible for using the mappings to make the transformations.

The Three Schema Architecture is an official standard of the American National
Standards Institute (ANSI). However, the specific details of the standard were never
widely adopted. Rather, the standard serves as a guideline about how data
independence can be achieved. The spirit of the Three Schema Architecture is
widely implemented in third- and fourth-generation DBMSs.

Distributed Processing and the Client-Server Architecture

With the growing importance of network computing and the Internet, distributed
processing is becoming a crucial function of DBMSs. Distributed processing allows
geographically dispersed computers to cooperate when providing data access. A

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 3 Database Fundamental

 Page 14 of 18

large part of electronic commerce on the Internet involves accessing and updating
remote databases. Many databases in retail, banking, and security trading are now
available through the Internet. DBMSs use available network capacity and local
processing capabilities to provide efficient remote database access.

Many DBMSs support distributed processing using client-server architecture. A client
is a program that submits requests to a server. A server processes requests on
behalf of a client. For example, a client may request a server to retrieve product
data. The server locates the data and sends them back to the client. The client may
perform additional processing on the data before displaying the results to the user.
As another example, a client submits a completed order to a server. The server
validates the order, updates a database, and sends an acknowledgement to the
client. The client informs the user that the order has been processed.

Figure 10 Client/server database on same computer

Figure 11 Multiple clients and one server on different computers

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 3 Database Fundamental

 Page 15 of 18

Figure 12 Multiple servers and databases on different computers

To improve performance and availability of data, the client-server architecture
supports many ways to distribute software and data in a computer network. The
simplest scheme is just to place both software and data on the same computer,
Figure 10. To take advantage of a network, both software and data can be
distributed. In Figure 11, the server software and the database are located on a
remote computer. In Figure 12, the server software and the database are located on
multiple remote computers.

Client-Server Architecture an arrangement of components (clients and
servers) and data among computers connected by a network. The client-
server architecture supports efficient processing of messages (requests for
service) between clients and servers.

The DBMS has a number of responsibilities in client-server architecture. The DBMS
provides software that can execute on both the client and the server. The client
software is typically responsible for accepting user input, displaying results, and
performing some processing of data. The server software validates client requests,
locates remote databases, updates remote databases (if needed), and sends the
data in a format that the client understands.

Client-server architectures provide a flexible way for DBMSs to interact with
computer networks. The distribution of work among clients and servers and the
possible choices to locate data and software are much more complex than described
here.

3.5 ORGANIZATIONAL IMPACTS OF DATABASE

TECHNOLOGY

This section completes your introduction to database technology by discussing how
databases affect organizations. The first section describes how you might interact
with a database in an organization. The second section describes information
resource management, an effort to control the data produced and used by an
organization. Special attention is given to management roles that you may play as
part of an effort to control information resources.

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 3 Database Fundamental

 Page 16 of 18

Interacting with Databases

Because databases are pervasive, there are a variety of ways in which you may
interact with databases. The classification in Figure 13 distinguishes between
functional users who interact with databases as part of their work and information
systems professionals who participate in designing and implementing databases.
Each box in the hierarchy represents a role that you may play. You may
simultaneously play more than one role. For example, a functional user in a job such
as financial analysis may play all three roles in different databases. In some
organizations, the distinction between functional users and information systems
professionals is blurred. In these organizations, functional users may participate in
designing and using databases.

Figure 13 Classification of roles

Functional users can play a passive or an active role when interacting with
databases. Indirect usage of a database is a passive role. An indirect user is given a
report or some data extracted from a database. A parametric user is more active
than an indirect user. A parametric user requests existing forms or reports using
parameters, input values that change from usage to usage. For example, a
parameter may indicate a date range, sales territory, or department name. The
power user is the most active. Because decision-making needs can be difficult to
predict, ad-hoc or unplanned usage of a database is important. A power user is
skilled enough to build a form or report when needed.

Database Administrator a support position that specializes in managing
individual databases and DBMSs.

Power users should have a good understanding of nonprocedural access, a skill
described in the first part of this book. Information systems professionals interact
with databases as part of developing an information system. Analyst/programmers
are responsible for collecting requirements, designing applications, and
implementing information systems. They create and use external views to develop
forms, reports, and other parts of an information system. Management has an
oversight role in development of databases and information systems.

Database administrators assist both information systems professionals and
functional users.

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 3 Database Fundamental

 Page 17 of 18

Database administrators have a variety of both technical and non-technical
responsibilities Table 6. Technical skills are more detail-oriented; non-technical
responsibilities are more people-oriented. The primary technical responsibility is
database design. On the non-technical side, the database administrator's time is split
among a number of activities. Database administrators also can have responsibilities
in planning databases and evaluating DBMSs.

APPENDIX

Table 1 Summary of common features of DBMSs
Features Description
Database definition Language and graphical tools to define entities, relationship,

integrity constraints, and authorization rights.
Nonprocedural access Language and graphical tools to access data without

complicated coding.
Application development Graphical tools to develop menus, data entry forms, and

reports.
Procedural language
interface

Language that combines nonprocedural access with full
capabilities of a programming language.

Transaction processing Control mechanisms to prevent interference from
simultaneous users and recover lost data after a failure.

Database tuning Tools to monitor and improve database performance.

Table 2 Display of student table in Microsoft Access
StdFirstName StdLastName StdCity StdState StdZip StdMajor STdClass StdGPA

HOMER WELLS SEATTLE WA 98121-
1111

IS FR 3.00

BOB NORBERT BOTHELL WA 98011-
2121

FIN JR 2.70

CANDY KENDALL TACOMA WA 99042-
3321

ACCT JR 3.50

WALLY KENDALL SEATTLE WA 98123-
1141

IS SR 2.80

JOE ESTRADA SEATTLE WA 98121-
2333

FIN SR 3.20

MARIAH DODGE SEATTLE WA 98114-
0021

IS JR 3.60

TESS DODGE REDMOND WA 98116-
2344

ACCT SO 3.30

Table 3 Result of executing query in Figure 6
StdFirstName StdLastName StdCity OfferNo EnrGrade

MARIAH DODGE SEATTLE 1234 3.8
BOB NORBERT BOTHELL 5679 3.7

ROBERTO MORALES SEATTLE 5679 3.8
MARIAH DODGE SEATTLE 6666 3.6

LUKE BRAZZI SEATTLE 7777 3.7
WILLIAM PILGRIM BOTHELL 9876 4.0

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 3 Database Fundamental

 Page 18 of 18

Table 4 Brief Evolution of Database Technology
Era Generation Orientation Major Features
1960s 1st File File structures and proprietary program

interfaces
1970s 2nd Network

navigation
Networks and hierarchies of related
records, standard program interfaces

1980s 3rd Relational Nonprocedural languages, optimization,
transaction processing

1990s 4th Object Multimedia, active, distributed
processing, more powerful operators

Table 5 University database example depicting differences among schema levels
Schema Level Description
External HighGPAView: data required for the query in Figure 6.
 FacultyAssignmentFormView: data required for the form in Figure 7.
 FacultyWorkLoadReportView: data required for the report in Figure 8
Conceptual Student, Enrollment, Course, Faculty, and Enrollment tables and

relationship Figure 5.
Internal Files needed to store the tables; extra files (indexed property in

Figure 4) to improve performance

Table 6 Responsibilities of the database administrator
Technical Nontechnical
Designing conceptual schemas Setting database standards
Designing internal schemas Devising training materials
Monitoring database performance Promoting benefits of databases
Selecting and evaluating database
software

Consulting with users

Designing client-server databases
Troubleshooting database problems

