
Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 4 Relational Data Model

 Page 1 of 29

4 Relational Data Model

Relational database systems were originally developed because of familiarity and
simplicity. Because tables are used to communicate ideas in many fields, the
terminology of tables, rows, and columns is not intimidating to most users. During the
early years of relational databases (1970s), the simplicity and familiarity of relational
databases had strong appeal, especially as compared to the procedural orientation
of other data models that existed at the time. Despite the familiarity and simplicity of
relational databases, there is a strong mathematical basis also. The mathematics of
relational databases involves thinking about tables as sets. The combination of
familiarity and simplicity with a mathematical foundation is so powerful that relational
DBMSs are commercially dominant.

This chapter provides the basic terminology of relational databases and introduces
the CREATE TABLE statement of the Structured Query Language (SQL).

4.1 Tables

A relational database consists of a collection of tables. Each table has a heading or
definition part and a body or content part. The heading part consists of the table
name and the column names. For example, a student table may have columns for
social security number, name, street address, city, state, zip, class (freshman,
sophomore, etc.), major, and cumulative grade point average (GPA). The body
shows the rows of the table. Each row in a student table represents a student
enrolled at a university. A student table for a major university may have more than
30,000 rows, too many to view at one time.

Table is a 2D arrangement of data. A table consists of a heading of
defining the table name and column names and a body containing rows of
data.

To understand a table, it is also useful to view some of its rows. A table listing or
datasheet shows the column names in the first row and the body in the other rows.
Table 1 shows a table listing for the Student table. Three sample rows representing
university students are displayed. In this book, the naming convention for column
names includes a table abbreviation ("Std") followed by a descriptive name. Because
column names often are used without identifying the associated tables, the
abbreviation supports ease table association. Mixed case highlights the different
parts of a column name.

A CREATE TABLE statement can be used to define the heading part of a table.
CREATE TABLE is a statement in the Structured Query Language (SQL). Because
SQL is an industry standard language, the CREATE TABLE statement can be used
to create tables in most DBMSs. The CREATE TABLE statement on the next page
creates the Student table. For each column, the column name and the data type are
specified. Data types indicate the kind of data (character, numeric, Yes/No, etc.) and
permissible operations (numeric operations, string operations, etc.) for the column.

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 4 Relational Data Model

 Page 2 of 29

Each data type has a name (for example, CHAR for character) and usually a length
specification. Table 2 lists common data types used in relational DBMSs.

Data types are not standard across relational DBMSs. These data types
are supported by most systems although the name of the data type may
differ.

To create a table for example shown in Table 1., you can use the following SQL
statement:

CREATE TABLE Student
(StdSSN CHAR(11),

StdFirstName VARCHAR(50),
StdLastName VARCHAR(50),
StdCity VARCHAR(50),
StdState CHAR(11),
StdZip CHAR(11),
StdMajor CHAR(11),
StdClass CHAR(11),
StdGPA DECIMAL(3,2))

It is not enough to understand each table individually. To understand a relational
database, connections or relationships among tables also must be understood. The
rows in a table are usually related to rows in other tables. Matching (identical) values
show relationships between tables. Consider the sample Enrollment table (Table 3)
in which each row represents a student enrolled in an offering of a course. The
values in the StdSSN column of the Enrollment table match the StdSSN values in
the sample Student table (Table 1). For example, the first and third rows of the
Enrollment table have the same StdSSN value (123-45-6789) as the first row of the
Student table. Likewise, the values in the OfferNo column of the Enrollment table
match the OfferNo column in the Offering table (Table 4). Figure 1 shows a graphical
depiction of the matching values.

Relationship connection between rows in two tables. Relationships are
shown by column values in one table that match column values in another
table.

The concept of matching values is crucial in relational databases. As you will see,
relational databases typically contain many tables. Even a modest-size database can
have 10 to 15 tables. Large databases can have hundreds of tables. To extract
meaningful information, it is often necessary to combine multiple tables using
matching values. By matching on Student.StdSSN and Enrollment.StdSSN you
could combine the Student and Enrollment tables. Similarly, by matching on
Enrollment. OfferNo and Offering.OfferNo you could combine the Enrollment and
Offering tables. As you will see later in this chapter, the operation of combining
tables on matching values is known as a join. Understanding the connections
between tables (or ways that tables can be combined) is crucial for extracting useful
data.

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 4 Relational Data Model

 Page 3 of 29

When columns have identical names in two tables. it is customary to
precede the column name with the table name and a period as
Sludent.StdSSN and Enrollment. StdSSN.

You should be aware that other terminology is used besides table, row, and column.
Table 5 shows three roughly equivalent terminologies. The divergence in terminology
is due to the different groups that use databases. The table-oriented terminology
appeals to end users; the set-oriented terminology appeals to academic researchers:
and the record-oriented terminology appeals to information systems professionals. In
practice, these terms may be mixed. For example, in the same sentence you may
hear both "tables" and "fields." You should expect to see a mix of terminology in your
career.

Figure 1 Matching values among the Enrolment, Offering, and Student tables.

4.2 Integrity Rules

Entity integrity (uniqueness integrity) means that each table must have a column or
combination of columns with unique values. Unique means that no two rows of a
table have the same value. For example, StdSSN in Student is unique and the
combination of StdSSN and OfferNo is unique in Enrollment. Entity integrity ensures
that entities (people, things, and events) are uniquely identified in the database. For
auditing and security reasons, it is often important that business entities be easily
traceable.

Referential integrity means that the values of columns in one table must match the
values of columns in other tables. For example, the value of StdSSN in each row of
the Enrollment table must match the value of StdSSN in some row of the Student
table. Referential integrity ensures that the database contains valid connections. For
example, it is critical that each row of Enrollment contains a social security number of
a valid student. Otherwise, some enrollments can be meaningless, possibly resulting
in students denied enrollment because non-existing students took their places.

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 4 Relational Data Model

 Page 4 of 29

When columns have identical names in two tables. It is customary to
precede the column name with the table name and a period as
Student.StdSSN and Enrollment. StdSSN.

For more precise definitions of entity integrity and referential integrity, a number of
other definitions are necessary. These prerequisite definitions and the more precise
definitions are presented below.

•Superkey: a column or combination of columns containing unique values for each
row. The combination of every column in a table is always a superkey, as rows in a
table must be unique.

•Candidate key: a minimal superkey. A superkey is minimal if removing any
columns makes it no longer unique.

•Null value: a special value that represents the absence of an actual value. A null
value can mean that the actual value is unknown or does not apply to the given row.

•Primary key: a specially designated candidate key. The primary key for a table
cannot contain null values.

•Foreign key: a column or combination of columns in which the values must match
those of a candidate key. A foreign key must have the same data type as its
associated candidate key. In the CREATE TABLE statement of SQL2, a foreign key
must be associated with a primary key rather than merely a candidate key.

Integrity Rules
•Entity integrity rule: No two rows of a table can contain the same value for the
primary key. In addition, no row can contain a null value for any columns of a primary
key.

•Referential integrity rule: Only two kinds of values can be stored in a foreign key:

• a value matching a candidate key value in some row of the table containing the

associated candidate key or

• a null value.

Applying the Integrity Rules

To extend your understanding, let us apply the integrity rules to several tables in the
university database. The primary key of Student is StdSSN. A primary key can be
designated as part of the CREATE TABLE statement. To designate StdSSN as the
primary key of Student, use a CONSTRAINT clause for the primary key at the end of
the CREATE TABLE statement as shown next column. The word PKStudent
following the CONSTRAINT keyword is the name of the constraint.

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 4 Relational Data Model

 Page 5 of 29

CREATE TABLE Student
(StdSSN CHAR(11),
 StdFirstName VARCHAR(50),
 StdLastName VARCHAR(50),
 StdCity VARCHAR(50),
 StdState CHAR(2),
 StdZip CHAR(10),
 StdMajor CHAR(6),
 StdClass CHAR(2),
 StdGPA DECIMAL(3,2),
CONSTRAINT PKStudent PRIMARY KEY (StdSSN))

Candidate keys that are not primary keys are declared with the UNIQUE keyword.
The Course table (see Table 6) contains two candidate keys: CnurseNo and
CrsDesc (course description). The CourseNo column is the primary key because it is
more stable than the CrsDesc column. Course descriptions may change over time,
but the course numbers remain the same. In the CREATE TABLE statement, a
constraint with the keyword UNIQUE follows the primary key constraint.

CREATE TABLE Course
(CourseNo CHAR(6),
 CrsDesc VARCHAR(250),
 CrsUnits SMALLINT,
CONSTRAINT PKCourse PRIMARY KEY(CourseNo),
CONSTRAINT UniqueCrsDesc UNIQUE (CrsDesc))

Some tables need more than one column in the primary key. In the Enrollment table,
the combination of StdSSN and OfferNo is the only candidate key. Both columns are
needed to identify a row. A primary key consisting of more than one column is known
as a composite or a combined primary key.
Superkeys are usually not important to identify because they are common and
contain columns that do not contribute to the uniqueness property. For example, the
combination of StdSSN and StdLastName is unique. However, if StdLastName is
removed, StdSSN is still unique.

For referential integrity, the columns StdSSN and OfferNo are foreign keys in the
Enrollment table. The StdSSN column refers to Student and the OfferNo column
refers to the Offering table (Table 4). An Offering row represents a course given in
an academic period (summer, winter, etc.), year, time, location, and days of the
week. The primary key of Offering is OfferNo. A course such as IS480 will have
different offer numbers each time it is offered.

Referential integrity constraints can be defined similarly to the way of defining
primary keys. For example, to define the foreign keys in Enrollment, use
CONSTRAINT clauses for foreign keys at the end of the CREATE TABLE statement:

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 4 Relational Data Model

 Page 6 of 29

CREATE TABLE Enrollment
(OfferNo INTEGER,
 StdSSN CHAR(11),
 EnrGrade DECIMAL(3,2),
CONSTRAINT PKEnrollment PRIMARY KEY(OfferNo, StdSSN),

CONSTRAINT FKOfferNo FOREIGN KEY (OfferNo) REFERENCES Offering,

CONSTRAINT FKStdSSN FOREIGN KEY (StdSSN) REFERENCES Student)

Allowing Null Values in Foreign Keys

Although referential integrity permits foreign keys to have null values, it is not
common for foreign keys to have null values. When a foreign key is part of a primary
key, null values are not permitted because of the entity integrity rule. For example,
null values are not permitted for either Enrollrnent.StdSSN or Enrollment. OfferNo
because each is part of the primary key.

When a foreign key is not part of a primary key, usage dictates whether null values
should be permitted. For example, Offering.CourseNo, a foreign key referring to
Course (Table 4), is not part of a primary key yet null values are not permitted. In
most universities, a course cannot be offered before it is approved. Thus, an offering
should not be inserted without having a related course.

In contrast, the Offering.FacSSN column referring to the faculty member teaching the
offering may be null. The Faculty table (Table 7) stores data about instructors of
courses. A null value for Offering.FacSSN means that a faculty member is not yet
assigned to teach the offering. For example, an instructor is not assigned in the first
and third rows of Table 4. Because offerings must be scheduled perhaps a year in
advance, it is likely that instructors for some offerings will not be known until after the
offering row is initially stored. Therefore, permitting null values in the Offering table is
prudent.

In the CREATE TABLE statement, the NOT NULL clause indicates that a column
cannot have null values. We can specify not allowing NULLS by appending the NOT
NULL clause after the data type specification. NOT NULL clause can also be
specified in a CONSTRAINT clause.

CREATE TABLE Student
(StdSSN CHAR(11) NOT NULL,
StdFirstName VARCHAR(50) NOT NULL,
StdLastName VARCHAR(50) NOT NULL,
StdCity VARCHAR(50) NOT NULL,
Stdstate CHAR(2) NOT NULL,
StdZip CHAR(10) NOT NULL,
StdMajor CHAR(6),

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 4 Relational Data Model

 Page 7 of 29

StdClass CHAR(2),
StdGPA DECIMA.L(3,2),
CONSTRAINT PKStudent PRIMARY KEY (StdSSN))

Referential Integrity for Self-Referencing (Unary) Relationships

This section finishes with a discussion of self-referencing relationships, a special
kind of referential integrity constraint. Self-referencing or unary relationships involve
a sin- table. Self-referencing relationships are not common, but they are important
when they occur. In the university database, a faculty member can supervise other
faculty members and be supervised by a faculty member.

Self-referencing Relationship a relationship in which a foreign key refers to
the same table. Self-referencing relationships represent associations among
members of the same set.

For example, Victoria Emmanuel (second row) supervises Leonard Fibon (third row).
The FacSupervisor column shows this relationship: the FacSupervisor value in the
third row (543-21-0987) matches the FacSSN value in the second row. A referential
integrity constraint involving the FacSupervisor column represents the self-
referencing relationship. In the CREATE TABLE statement, the referential integrity
constraint for a self-referencing relationship can be written the same way as other
referential integrity constraints:

CREATE TABLE Faculty
(FacSSN CHAR(11) NOT NULL,
FacFirstName VARCHAR(50) NOT NULL,
FacLastName VARCHAR(50) NOT NULL,
FacCity VARCHAR(50) NOT NULL,
FacState CHAR(2) NOT NULL,
FacZipCode CHAR(10) NOT NULL,
FacHireDate DATE,
FacDept CHAR(6),
FacRank CHAR(4),
FacSalary DECIMAL(10,2),
FacSupervisor CHAR(11),
CONSTRAINT PKFaculty PRIMARY KEY (FacSSN),
CONSTRAINT PKFacSupervisor FOREIGN KEY (FacSupervisor) REFERENCES
Faculty)

Graphical Representation of Referential Integrity

In recent years, commercial DBMSs have provided graphical representations for
referential integrity constraints. The graphical representation makes referential
integrity easier to define and understand than the text representation in the CREATE

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 4 Relational Data Model

 Page 8 of 29

TABLE statement. In addition, a graphical representation supports nonprocedural
data access.

To depict a graphical representation, let us study the Relationship window in
Microsoft Access. Access provides the Relationship window to visually define and
display referential integrity constraints. Figure 2 (Appendix) shows the Relationship
window for the tables of the university database. Each line represents a referential
integrity constraint or relationship. In a relationship, the primary key table is known
as the "I" table (for example, Student) and the foreign key table (for example.
Enrollment) is known as the "M" (many) table.

1-M Relationship a connection between two tables in which one row of a
table can be referenced by many rows of a second table. 1-M relationships
are the most common kind of relationship.

The relationship from Student to Enrollment is called " 1-M" (one to many) because a
student can be related to many enrollments but an enrollment can be related to only
one student. Similarly the relationship from the Offering table to the Enrollment table
means that an offering can be related to many enrollments but an enrollment can be
related to only one offering. You should practice by writing similar sentences for the
other relationships in Figure 2.

M-N Relationship a connection between two tables in which rows of each
table can be related to many rows of the other table. M-N relationships
cannot be directly represented in the Relational Model. Two 1M relationships
and a linking or associative table represent an M-N relationship.

M-N (many to many) relationships are not directly represented in the Relational
Model. An M-N relationship means that rows from each table can be related to many
rows of the other table. For example, a student enrolls in many course offerings and
a course offering contains many students. In the Relational Model, a pair of 1-M
relationships and a linking or associative table represents an M-N relationship. In
Figure 2, the linking table Enrollment and its relationships with Offering and Student
represent an MN relationship between the Student and Offering tables.

Self-referencing relationships are represented indirectly in the Relationship window.
The self-referencing relationship involving Faculty is represented as a relationship
between the Faculty and Faculty_1 tables. Faculty_1 is not a real table as it is
created only inside the Relationship window: Access can only indirectly show self-
referencing relationships.

A graphical representation such as the Relationship window makes it easy to identify
tables that should be combined to fulfill a retrieval request. For example, assume
that you want to find instructors who teach courses with "database" in the course
description. Clearly, you need the Course table to find "database" courses. You also
need the Faculty table to display instructor data. Figure 2 shows that you also need
the Offering table because Course and Faculty are not directly connected. Rather,
Course and Faculty are connected through Offering. Thus, visualizing relationships

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 4 Relational Data Model

 Page 9 of 29

helps to identify tables needed to fulfill retrieval requests. Before attempting the
retrieval problems in later chapters, you should carefully study a graphical
representation of the relationships. You should construct your own diagram if one is
not available.

4.3 Delete and update actions for referenced rows

For each referential integrity constraint, you should carefully consider actions on
referenced rows. A row is referenced if there is a matching row in a foreign hey table.
For example, the first row of the Course table (Table 6) with CourseNo "IS320" is
referenced by the first row of the Offering table (Table 4). It is natural to consider
what happens to related Offering rows when the referenced Course row is deleted or
the CourseNo is updated. More generally, these concerns can be stated as:

Deleting a referenced row: What happens to related rows (that is, rows in the
foreign key table) when the referenced row is deleted?

Updating the primary key of a referenced row: What happens to related rows
when the primary key of the referenced row is updated?

Actions on referenced rows are important when changing the rows of a database.
When developing data entry forms, actions on referenced rows can be especially
important. For example, if a data entry form permits deletion of rows in the Course
table, actions on related rows in the Offering table must be carefully planned.
Otherwise, the database can become inconsistent.

Possible Actions

There are several possible actions in response to the deletion of a referenced row or
the update of the primary key of a referenced row. The appropriate action depends
on the tables involved. The following list describes the actions and provides
examples of usage.

•Restrict: Do not allow the action on the referenced row. For example, do not permit
a Student row to be deleted if there are any related Enrollment rows. Similarly, do
not allow Student.StdSSN to be changed if there are related Enrollment rows.

•Cascade: Perform the same action (cascade the action) to related rows. For
example, if a Student is deleted, then delete the related Enrollment rows. Likewise, if
Student.StdSSN is changed in some row, update StdSSN in the related Enrollment
rows.

•Nullify: Set the foreign key of related rows to null. For example, if a Faculty row is
deleted, then set FacSSN to NULL in related Offering rows. Likewise, if
Faculty.FacSSN is updated, then set FacSSN to NULL in related Offering rows. The
nullify action is not permitted if the foreign key does not allow null values. For

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 4 Relational Data Model

 Page 10 of 29

example, the nullify option is not valid when deleting rows of the Student table
because Enrollment. StdSSN is part of the primary key.

•Default: Set the foreign key of related rows to its default value. For example, if a
Faculty row is deleted, then set FacSSN to a default faculty in related
Offering rows. The default faculty might have an interpretation such as "to be
announced." Likewise, if Faculty.FacSSN is updated, then set FacSSN to its default
value in related Offering rows. The default action is an alternative to the null action
as the default action avoids null values.

The delete and update actions can be specified in SQL using the ON DELETE and
ON UPDATE clauses. These clauses are added as part of foreign key constraints.
For example, the revised CREATE TABLE statement for the Enrollment table shows
ON DELETE and ON UPDATE actions for the Enrollment table. NO ACTION means
restrict (the first possible action). The keywords CASCADE, SET NULL. and SET
DEFAULT can be used to specify the second through fourth options, respectively.

CREATE TABLE Enrollment

(OfferNo INTEGER NOT NULL,
StdSSN CHAR(11) NOT NULL,
EnrGrade DECIMAL(3,2),

CONSTRAINT PKEnrollment PRIMARY KEY(OfferNo, StdSSN),

CONSTRAINT FKOfferNo FOREIGN KEY (OfferNo) REFERENCES Offering ON
DELETE NO ACTION ON UPDATE CASCADE,

CONSTRAINT FKStdSSN FOREIGN KEY (StdSSN) REFERENCES Student ON
DELETE NO ACTION ON UPDATE CASCADE)

Before finishing this section, you should understand the impact of referenced rows
on insert operations. A referenced row must be inserted before its related rows. For
example, before inserting a row in the Enrollment table, the referenced rows in the
Student and Offering tables must exist. Referential integrity places an ordering on
adding rows from different tables. When designing data entry forms, we should
carefully consider the impact of referential integrity on the order that users complete
forms.

4.4 Operations of relational algebra

In previous sections of this chapter, we have familiarized the terminology and
integrity rules of relational databases with the goal of understanding existing
relational databases. In particular, understanding connections among tables was
emphasized as a prerequisite to retrieving useful information. This section describes
some fundamental operators that can be used to retrieve useful information from a
relational database.

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 4 Relational Data Model

 Page 11 of 29

You can think of relational algebra similarly to the algebra of numbers except that the
objects are different: algebra applies to numbers and relational algebra applies to
tables. In algebra, each operator transforms one or more numbers into another
number. Similarly, each operator of relational algebra transforms a table (or two
tables) into a new table.

This section emphasizes the study of each relational algebra operator in isolation.
For each operator, you should understand its purpose and inputs. While it is possible
to combine operators to make complicated formulas, this level of understanding is
not important for developing query formulation skills. Using relational algebra by itself
to write queries can be awkward because of details such as ordering of operations
and parentheses. Therefore, you should seek only to understand the meaning of
each operator, not how to combine operators to write expressions.

The coverage of relational algebra groups the operators into three categories. The
most widely used operators (restrict, project, and join) are presented first. The
extended cross product operator is also presented to provide background for the join
operator. Knowledge of these operators will help you to formulate a large percentage
of queries. More specialized operators are covered in latter parts of the section. The
more specialized operators include the traditional set operators (union, intersection,
and difference) and advanced operators (summarize and divide). Knowledge of
these operators will help you formulate more difficult queries.

Restrict (select) and project operators

The restricts (also known as select) and project operators produce subsets of a
table. Because users often want to see a subset rather than an entire table, these
operators are widely used. These operators are also popular because they are easy
to understand.

Figure 3 Graphical representation of restrict and project operations.

The restrict and project operators produce an output table that is a subset of an input
table (Figure 3). Restrict produces a subset of the rows, while project produces a
subset of the columns. Restrict uses a condition or logical expression to indicate
what rows should be retained in the output. Project uses a list of column names to
indicate what columns to retain in the output. Restrict and project are often used

Restrict Project

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 4 Relational Data Model

 Page 12 of 29

together because tables can have many rows and columns. It is rare that a user
wants to see all rows and columns.

The logical expression used in the restrict operator can include comparisons
involving columns and constants. Complex logical expressions can be formed using
the logical operators AND, OR. and NOT. For example, Table 8 shows the result of a
restrict operation on Table 4 where the logical expression is: OffDays = ‘MW’ AND
OffTerm = ‘SPRING’ AND offer = 2000.

Restrict an operator that retrieves a subset of the rows of the input table
that satisfy a given condition.

Project an operator that retrieves a specified subset of the columns of
the input table.

A project operation can have a side effect. Sometimes after a subset of columns is
retrieved, there are duplicate rows. When this occurs, the project operator removes
the duplicate rows.

CourseNo
IS320
IS460
IS480

Table 9 Result of a project operation on Offering.CourseNo

For example, if Offering.CourseNo is the only column used in a project operation,
only three rows are in the result (Table 9) even though the Offering table (Table 4)
has nine rows. The column Offering.CourseNo contains only three unique values in
Table 4. Note that if the primary key or a candidate key is included in the list of
columns, the resulting table has no duplicates. For example, if OfferNo was included
in the list of columns, the result table would have nine rows with no duplicate
removal necessary.

This side effect is due to the "pure" nature of relational algebra. In relational algebra,
tables are considered sets. Because sets do not have duplicates, duplicate removal
is a possible side effect of the project operator. Commercial languages such as SQL
usually take a more pragmatic view. Because duplicate removal can be
computationally expensive, duplicates are not removed unless the user specifically
requests it.

Extended cross product operator

The extended cross product operator can combine any two tables. Other table
combining operators have conditions about the tables to combine. Because of its
unrestricted nature, the extended cross product operator can produce tables with
excessive data. The extended cross product operator is important because it is a
building block for the join operator. When you initially learn the join operator,

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 4 Relational Data Model

 Page 13 of 29

knowledge of the extended cross product operator can be useful. After you gain
experience with the join operator, you will not need to rely on the extended cross
product operator.

The extended cross product (product for short) operator shows everything possible
from two tables. The product of two tables is a new table consisting of all possible
combinations of rows from the two input tables. Figure 4 depicts a product of two
single column tables. Each result row consists of the columns of the Faculty table
(only FacSSN) and the columns of the Student table (only StdSSN). The name of the
operator (product) derives from the number of rows in the result. The number of rows
in the resulting table is the product of the number of rows of the two input tables. In
contrast, the number of result columns is the sum of the columns of the two input
tables. In Figure 4, the result table has nine rows and two columns.

Extended Cross Product an operator that builds a table consisting
of all possible combinations of rows, from each of the two input
tables.

As another example, consider the product of the sample Student (Table 10) and
Enrollment (Table 11) tables. The resulting table (Table 12) has nine rows (3 X 3)
and seven columns (4 + 3). Note that most rows in the result are not meaningful as
only three rows have the same value for StdSSN.

As these examples show, the extended cross product operator often generates
excessive data. Excessive data are as bad as lack of data. For example, the product
of a student table of 30,000 rows and an enrollment table of 300,000 rows is a table
of nine billion rows! Most of these rows would be meaningless combinations. So it is
rare that a cross product operation by itself is needed. Rather, the importance of the
cross product operator is as a building block for other operators such as the join.

Figure 4 Cross product example

FacSSN
111-11-1111
222-22-2222
333-33-3333

Faculty

StdSSN
111-11-1111
444-44-4444
555-55-5555

Student

FacSSN
111-11-1111
111-11-1111
111-11-1111
222-22-2222
222-22-2222
222-22-2222
333-33-3333
333-33-3333
333-33-3333

Faculty PRODUCT
Student

StdSSN
111-11-1111
444-44-4444
555-55-5555
111-11-1111
444-44-4444
555-55-5555
111-11-1111
444-44-4444
55-55-5555

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 4 Relational Data Model

 Page 14 of 29

Join Operator

Join is the most widely used operator for combining tables. Because most databases
have many tables, combining tables is important. Join differs from cross product
because join requires a matching condition on rows of two tables. Most tables are
combined in this way. To a large extent, your skill in retrieving useful data will
depend on your ability to use the join operator.

The 'fin operator builds a new table by combining rows from two tables that match on
a join condition. Typically, the join condition specifies that two rows have an identical
value in one or more columns. When the join condition involves equality, the join is
known as an equi-join, for equality join. Figure 5 shows a join of sample Faculty and
Offering tables where the join condition is that the FacSSN columns are equal. Note
that only a few columns are shown to simplify the illustration. The arrows indicate
how rows from the input tables combine to form rows in the result table. For
example, the first row of the Faculty table combines with the first and third rows of
the Offering table to yield two rows in the result table.

The natural join operator, a specialized kind of join, is the most common join
operation. In a natural join operation, the join condition is equality (equi-join), one of
the join columns is removed, and the join columns have the same unqualified name.
In Figure 5, the result table contains only three columns because the natural join
removes one of the FacSSN columns. The particular column (Faculty.FacSSN or
Offering.FacSSN) removed does not matter.

As another example, consider the natural join of Student (Table 13) and Enrollment
(Table 14) shown in Table 15. In each row of the result, Student.StdSSN matches
Enrollment. StdSSN Only one of the join columns is included in the result. Arbitrarily,
Student.StdSSN is shown although Enrollment. StdSSN could be included without
changing the result.

An "unqualified" name is the column name without the table name. The
full name of a column includes the table name. Thus, the full names of
the join columns in Figure 5 are Faculty.FacSSN and Offering.FacSSN.

Join an operator that produces a table containing rows that match on a
condition involving a column from each input table.

Natural Join a commonly used join operator where the matching
condition is equality (equi-join), one of the matching columns is
discarded in the result table, and the join columns have the same
unqualified names.

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 4 Relational Data Model

 Page 15 of 29

Figure 5 Sample natural join operation

Derivation of the Natural Join

The natural join operator is not primitive because it can be derived from other
operators. The natural join operator consists of three steps:

1. A product operation to combine the rows.

2. A restrict operation to remove rows not satisfying the join condition.

3. A project operation to remove one of the join columns.

To depict these steps, the first step to produce the natural join in Table 15 is the
product result shown in Table 12. The second step is to retain only the matching
rows (rows 1, 6, and 8 of Table 12). A restrict operation is used with
Student.StdSSN= Enrollment.StdSSN as the restriction condition. The final step is to
eliminate one of the join columns (Enrollment. StdSSN). The project operation
includes all columns except for Enrollment.StdSSN.
Although the join operator is not primitive, it can be conceptualized directly without its
primitive operations. When initially learning the join operator, it can be helpful to
derive the results using the underlying operations. As an exercise, you are
encouraged to derive the result in Figure 5. After learning the join, you should not
need to use the underlying operations.

Visual Formulation of Join Operations

As a query formulation aid, many DBMSs provide a visual way to formulate joins.
Microsoft Access provides a visual representation of the join operator using the
Query Design window. Figure 6 depicts a join between Student and Enrollment on
StdSSN using the Query Design window. To form this join, you need only to select

FacSSN

111-11-1111

222-22-2222

111-11-1111

Natural Join of
Offering and Faculty

FacSSN
111-11-1111

222-22-2222

333-33-3333

Faculty

FacName
Joe

Sue

Sara

Offering

OfferNo
1111
2222
3333

FacSSN
111-11-1111
222-22-2222
111-11-1111

FacName

Joe

Sue

Joe

OfferNo

1111

2222

3333

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 4 Relational Data Model

 Page 16 of 29

the tables. Access determines that you should join over the StdSSN column. Access
assumes that most joins involve a primary key and foreign key combination. If
Access chooses the join condition incorrectly, you can choose other join columns.

Figure 6 Query Design window showing a join between Student and Enrollment

Figure 7 Sample outer join operation

Outer Join Operator

The result of a join operation includes the rows matching on the join condition.
Sometimes it is useful to include both matching and non-matching rows. For
example, sometimes you want to know offerings that have an assigned instructor as
well as offerings without an assigned instructor. In these situations, the outer join
operator is useful.

The outer join operator provides the ability to preserve non-matching rows in the
result as well as to include the matching rows. Figure 7 depicts an outer join between
sample Faculty and Offering tables. Note that each table has one row that does not

FacSSN

111-11-1111

222-22-2222

111-11-1111

333-33-3333

FacName

Joe

Sue

Joe

Sara

OfferNo

1111

2222

3333

4444

Outer Join of
Offering and Faculty

FacSSN
111-11-1111

222-22-2222

333-33-3333

Faculty

FacName
Joe

Sue

Sara

Offering

OfferNo
1111
2222
3333
4444

FacSSN
111-11-1111
222-22-2222
111-11-1111

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 4 Relational Data Model

 Page 17 of 29

match any row in the other table. The third row of Faculty and the fourth row of
Offering do not have matching rows in the other table. For non-matching rows, null
values are used to complete the column values in the other table. In Figure 7 blanks
(no values) represent null values. The fourth result row is the non-matched row of
Faculty with a null value for the OfferNo column. Likewise, the fifth result row
contains a null value for the first two columns because it is a non-matched row of
Offering.

Full versus One-Sided Outer Join Operators

The outer join operator has two variations. The full outer join preserves non-
matching rows from both input tables. Figure 7 shows a full outer join because the
non-matching rows from both tables are preserved in the result. Because it is
sometimes useful to preserve the non-matching rows from just one input table, the
one-sided outer Join operator has been devised. In Figure 7, only the first four rows
of the result would appear for a one-sided outer join that preserves the rows of the
Faculty table. The last row would not appear in the result because it is an unmatched
row of the Offering table. Similarly, only the first three rows and last row would
appear in the result for a one-sided outer join that preserves the rows of the Offering
table.

Full Outer Join an operator that produces the matching rows (the join
part) as well as the non-matching rows from both tables.

The outer join is useful in two situations. A full outer join can be used to combine two
tables with some common columns and some unique columns. For example, to
combine the Student and Faculty tables, a full outer join can be used to show all
columns about all university people. In Table 18, the first two rows are only from the
sample Student table (Table 16), while the last two rows are only from the sample
Faculty table (Table 17). Note the use of null values for the columns from the other
table. The third row in Table 18 is the row common to the sample Faculty and
Student tables.

One-Sided Outer Join an operator that produces the matching rows
(the join part) as well as the non-matching rows from the designated
input table.

A one-sided outer join can be useful when a table has null values in a foreign key.
For example, the Offering table (Table 19) can have null values in the FacSSN
column representing course offerings without an assigned professor. A one-sided
outer join between Offering and Faculty preserves the rows of Offering that do not
have an assigned Faculty, as shown in Table 20. With a natural join, the first and
third rows of Table 20 would not appear.

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 4 Relational Data Model

 Page 18 of 29

Visual Formulation of Outer Join Operations

As a query formulation aid, many DBMSs provide a visual way to formulate outer
joins. Access provides a visual representation of the one-sided join operator in the
Query Design window. Figure 8 depicts a one-sided outer join that preserves the
rows of the Offering table. The arrow from Offering to Faculty means that the non-
matched rows of Offering are preserved in the result. When combining the Faculty
and Offering tables, Microsoft Access provides three choices: (1) show only the
matched rows (a join), (2) show matched rows and non-matched rows of Faculty,
and (3) show matched rows and non-matched rows of Offering. Choice (3) is shown
in Figure 8. Choice (1) would appear similar to Figure 6. Choice (2) would have the
arrow from Faculty to Offering.

Union, Intersection, and Difference Operators

The union. intersection, and difference table operators are similar to the traditional
set operators. The traditional set operators are used to determine all members of two
sets (union), common members of two sets (intersection), and members unique to
only one set (difference), as depicted in Figure 9.

The union, intersection, and difference operators for tables apply to rows of a table
but otherwise operate in the same way as the traditional set operators. A union
operation retrieves all the rows in either table. For example, a union operator applied
to two Student tables at different universities can find all student rows. An
intersection operation retrieves just the common rows. For example, an intersection
operation can determine the students attending both universities. A difference
operation retrieves the rows in the first table but not in the second table. For
example, a difference operation can determine the students attending only one
university.

Traditional Set Operators the union operator produces a table
containing rows from either input table. The intersection operator
produces a table containing rows common to both input tables. The
difference operator produces a table containing rows from the first input
table but not in the second input table.

Figure 8 Query design window showing a one-sided outer join

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 4 Relational Data Model

 Page 19 of 29

Figure 9 Venn diagrams for traditional set operators

Union Compatibility

Compatibility is a new concept for the table operators as compared to the traditional
set operators. With the table operators, both tables must be union compatible
because all columns are compared. Union compatible means that each table must
have the same number of columns and each corresponding column must have the
same data type. Union compatibility can be confusing because it requires positional
correspondence of the columns. That is. the first columns of the two tables must
have the same data type, the second columns must have the same data type, and
so on.

To depict the union, intersection, and difference operators, let us apply them to the
Student1 and Student2 tables (Tables 21 and 22). These tables are union
compatible because they have identical columns listed in the same order. The
results of union, intersection, and difference operators are shown in Tables 23
through 25, respectively. Even though we can determine that two rows are identical
from looking only at StdSSN, all columns are compared due to the way that the
operators are designed.

Union Compatibility a requirement on the input tables for the
traditional set operators. Both tables must have the same number of
columns and each corresponding column must have the same data
type.

Note that the result of Student1 DIFFERENCE Student2 would not be the same as
Student2 DIFFERENCE Student1. The result of the latter (Student2 DIFFERENCE
Student1) is the second and third rows of Student2 (rows in Student2 but not in
Student1).

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 4 Relational Data Model

 Page 20 of 29

Because of the union compatibility requirement, the union, intersection, and
difference operators are not as widely used as other operators. However, these
operators do have some important, specialized uses. One use is to combine tables
distributed over many locations. For example, suppose there is a student table at Big
State University (BSUStudent) and a student table at University of Big State
(UBSStudent). Because these tables have identical columns, the traditional set
operators are applicable. To find students attending either university, use
UBSStudent UNION BSUStudent. To find students only attending Big State, use
BSUStudent DIFFERENCE UBSStudent. To find students attending both
universities, use UBSStudent INTERSECT BSUStudent. Note that the resulting table
in each operation has the same number of columns as the two input tables.

The traditional operators are also useful if there are tables that are similar but not
union compatible. For example, the Student and Faculty tables have some identical
columns (StdSSN with FacSSN, StdLastName with FacLastName, and StdCity with
FacCity), but other columns are different. The union compatible operators can be
used if the Student and Faculty tables are first made union compatible using the
project operator discussed in Section “Restrict (select) and project operators”.

Summarize Operator

Summarize is a powerful operator for decision-making. Because tables can contain
many rows, it is often useful to see statistics about groups of rows rather than
individual rows. The summarize operator allows groups of rows to be compressed or
summarized by a calculated value. Almost any kind of statistical function can be
used to summarize groups of rows. Because this is not a statistics book, we will use
only simple functions such as count, min, max, average, and sum.

The summarize operator compresses a table by replacing groups of rows with
individual rows containing calculated values. A statistical or aggregate function is
used for the calculated values. Figure 10 depicts a summarize operation for a
sample enrollment table. The input table is grouped on the StdSSN column. Each
group of rows is replaced by the average of the grade column.

As another example, Table 27 shows the result of a summarize operation on the
sample Faculty table in Table 26. Note that the result contains one row per value of
the grouping column, FacDept.

Summarize an operator that produces a table with rows that
summarize the rows of the input table. Aggregate functions are used
to summarize the rows of the input table.

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 4 Relational Data Model

 Page 21 of 29

Figure 10 Sample summarize operation

The summarize operator can include additional calculated values (also showing the
minimum salary, for example) and additional grouping columns (also grouping on
FacRank, for example). When grouping on multiple columns, each result row shows
one combination of values for the grouping columns.

Divide Operator

The divide operator is a more specialized and difficult operator than join because the
matching requirement in divide is more stringent than join. For example, a join
operator is used to retrieve offerings taken by any student. A divide operator is
required to retrieve offerings taken by all (or every) students. Because divide has
more stringent matching conditions, it is not as widely used as join. and it can be
more difficult to understand. When appropriate, the divide operator provides a
powerful way to combine tables.

Divide an operator that produces a table in which the values of a
column from one input table are associated with all the values from a
column of the second table.

The divide operator for tables is somewhat analogous to the divide operator for
numbers. In numerical division, the objective is to find how many times one number
contains another number. In table division. the objective is to find values of one
column that contains every value in another column. Stated another way, the divide
operator finds values of one column that are associated with every value in another
column.

To understand more concretely how the divide operator works, consider an example
with sample Part and SuppPart (supplier-part) tables as depicted in Figure 11. The
divide operator uses two input tables. The first table (SuppPart) has two columns (a
binary table) and the second table (Part) has one column (a unary table). The result
table has one column where the values come from the first column of the binary
table. The result table in Figure 11 shows the suppliers who supply every part. The
value s3 appears in the output because it is associated with every value in the Part
table. Stated another way, the set of values associated with s3 contains the set of
values in the Part table.

To understand the division operator in another way, rewrite the SuppPart table as
three rows using the angle brackets <> to surround a row: <s3, {pl, p2, p3}>, <s0, {p1

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 4 Relational Data Model

 Page 22 of 29

}>, <s1, {p2}>. Rewrite the Part table as a set: {p1, p2}. The value s3 is in the result
table because its set of second column values {pl, p2, p3 } contains the values in the
second table {p1, p2}. The other SuppNo values (s0 and s1) are not in the result
because they are not associated with all the values in the Part table.

As an example using the university database tables, Table 30 shows the result of a
divide operation involving the sample Enrollment (Table 28) and Student tables
(Table 29). The result shows offerings in which every student is enrolled. Only
OfferNo 4235 has all three students enrolled.

Summary of Operators

To help you recall the relational algebra operators, Tables 31 and 32 provide a
convenient summary of the meaning and usage of each operator.

The divide by operator can he generalized to work with input tables
containing more columns. However, the details are not important in
this book.

Figure 11 Sample divide operation

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 4 Relational Data Model

 Page 23 of 29

APPENDIX

Table 1 Sample table listing of the student table

StdSSN StdFirstName StdLastName StdCity StdState StdZip StdMajor StdClass StdGPA
123-45-6789 HOMER WELLS SEATTLE WA 98121-1111 IS FR 3.00
124-56-7890 BOB NORBERT BOTHELL WA 98011-2121 FIN JR 2.70
234-56-7890 CANDY KNEDALL TACOMA WA 99042-3321 ACCT JR 3.50

Table 2 Brief Description of common SQL data types
Data Type Description
CHAR(L) For fixed-length text entries such as state abbreviations and social

security numbers. Each column value using CHAR contains the
maximum number of characters (L) even if the actual length is
shorter. Most DBMSs have an upper limit on the length (L) such as
255.

VARCHAR(L) For variable-length text such as names and street addresses.
Column values using VARCHAR contain only the actual number of
characters, not the maximum length as for CHAR columns. Most
DBMSs have an upper limit on the length such as 255.

FLOAT(P) F or columns containing numeric data with floating precision such
as interest rate calculations and scientific calculations. The
precision parameter P indicates the number of significant digits.
Most DBMSs have an upper limit on P such as 38. Some DBMSs
have two data types, REAL and DOUBLE PRECISION, for low-
and high-precision floating-point numbers instead of the variable
precision with the FLOAT data type.

DATE/TIME For columns containing dates and times such as an order date.
These data types are not standard across DBMSs. Some systems
support three data types (DATE, TIME, and TIMESTAMP) while
other systems support a combined data type (DATE) storing both
the date and time.

DECIMAL(W,R) For columns containing numeric data with a fixed precision such
as monetary amounts. The W value indicates the total number of
digits and the R value indicates the number of digits to the right of
the decimal point. This data type is also called NUMERIC in some
systems.

INTEGER For columns containing whole numbers (i.e., numbers without a
decimal point). Some DBMSs have the SMALLINT data type for
very small whole numbers and the LONG data type for very large
integers.

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 4 Relational Data Model

 Page 24 of 29

Table 3 Sample Enrollment Table

OfferNo StdSSN EnrGrade
1234 123-45-6789 3.3
1234 234-56-7890 3.5
4321 123-45-6789 3.5
4321 124-56-7890 3.2

Table 4 Sample Offering Table
OfferNo CourseNo OffTerm OffYear OffLocation OffTime FacSSN OffDays

1111 IS320 SUMMER 2000 BLM302 10:30 AM MW
1234 IS320 FALL 1999 BLM302 10:30 AM 098-76-

5432
MW

2222 IS460 SUMMER 1999 BLM412 1:30 PM TTH
3333 IS320 SPRING 2000 BLM214 8:30 AM 098-76-

5432
MW

4321 IS320 FALL 1999 BLM214 3:30 PM 098-76-
5432

TTH

4444 IS320 SPRING 2000 BLM302 3:30 PM 543-21-
0987

TTH

5678 IS480 SPRING 2000 BLM302 10:30 AM 987-65-
4321

MW

5679 IS480 SPRING 2000 BLM412 3:30 PM 876-54-
3210

TTH

9876 IS460 SPRING 2000 BLM307 1:30 PM 654-32-
1098

TTH

Table 5 alternative Terminology for Relational Databases

Table-oriented Set-oriented Record-oriented
Table Relation Record type, file
Row Tuple Record

Column Attribute Field

Table 6 Sample Course Table
CourseNo CrsDesc CrsUnits
IS320 FUNDAMENTALS OF BUSINESS 4
IS460 SYSTEM ANALYSIS 4
IS470 BUSINESS DATA COMMUNICATIONS 4
IS480 FUNDAMENTALS OF DATABASE 4

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 4 Relational Data Model

 Page 25 of 29

Table 7 Sample Faculty Table

FacSSN FacFirst
Name

FacLastName FacCity FacState FacDept FacRank FacSalary FacSuper
visor

FacHire
Date

FacZipC
ode

098-76-
5432

LEONAR
D

VINCE SEATTLE WA MS ASST $35,000 654-32-
1098

0l-Apr-90 98111-
9921

543-21-
0987

VICTORI
A

EMMANUEL BOTHELL WA MS PROF $120.000 01-Apr-
91

98011-
2242

654-32-
1098

LEONAR
D

FIBON SEATTLE WA NIS ASSC $70.000 5.13-21-
0987

01-Apr-
89

98121-
0094

765-43-
2109

VICKI

MACON BELLEVUE WA FIN PROF $65,000 01-Apr-
92

98015-
9945

876-54-
3210

CHRIS
TOPHER

COLAN SEATTLE WA MS ASST $40.000 651-32-
1098

01-Apr-
94

98114-
1332

987-65-
4321

JULIA MILLS SEATTL.E WA PIN ASSC $75,000 765-43-
2109

01-Apr-
95

98114-
9954

Table 8 Result of restrict operation on the sample offering table (Table 4)
OfferNo CourseNo OffTerm OffYear OffLocation OffTime EacSSN OffDay
3333 IS320 SPRING 2000 BLM214 8:30 AM 098-76-

5432
MW

5678 IS480 SPRING 2000 BLM302 10:30
AM

987-65-
4321

MW

Figure 2 Relationship window for the university database.

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 4 Relational Data Model

 Page 26 of 29

Table 10 Sample Student Table
StdSSN StdLastName StdMajor StdClass

123-45-6789 WELLS IS FR
124-56-7890 NORBERT FIN JR
234-56-7890 KENDALL ACCT JR

Table 11 Sample Enrollment Table

OfferNo StdSSN EnrGrade
1234 123-45-6789 3.3
1234 124-56-7890 3.5
4321 234-56-7890 3.2

Table 12 Student PRODUCT Enrollment
Student.StdSSN StdLastName StdMajor StdClass OfferNo Enrollment.StdSSN EnrGrade

123-45-6789 WELLS IS FR 1234 123-45-6789 3.3
123-45-6789 WELLS IS FR 1234 234-56-7890 3.5
123-45-6789 WELLS IS FR 4321 124-56-7890 3.2
124-56-7890 NORBERT FIN JR 1234 123-45-6789 3.3
124-56-7890 NORBERT FIN JR 1234 234-56-7890 3.5
124-56-7890 NORBERT FIN JR 4321 124-56-7890 3.2
234-56-7890 KENDALL ACCT JR 1234 123-45-6789 3.3
234-56-7890 KENDALL ACCT JR 1234 234-56-7890 3.5
234-56-7890 KENDALL ACCT JR 4321 124-56-7890 3.2

Table 13 Sample Student table

StdSSN StdLastName StdMajor StdClass
123-45-6789 WELLS IS FR
124-56-7890 NORBERT FIN JR
234-56-7890 KENDALL ACCT JR

Table 14 Sample Enrollment table
OfferNo StdSSN EnrGrade

1234 123-45-6789 3.3
1234 234-56-7890 3.5
4321 124-56-7890 3.2

Table 15 Natural join of Student and Enrollment
Student.StdSSN StdLastName StdMajor FRStdClass OfferNo EnrGrade

123-45-6789 WELLS IS FR 1234 3.3
124-56-7890 NORBERT FIN JR 4321 3.2
234-56-7890 KENDALL ACCT JR 1234 3.5

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 4 Relational Data Model

 Page 27 of 29

Table 16 Sample Student table Table 17 Sample Faculty table
StdSSN StdLastName StdMajor StdClass FacSSN FacLastName FacDept FacRank
123-45-

6789
WELLS IS FR 098-76-

5432
VINCE MS ASST

124-56-
7890

NORBERT FIN JR 543-21-
0987

EMMANUEL MS PROF

876-54-
3210

COLAN MS SR 876-54-
3210

COLAN MS ASST

Table 18 Result of full outer join of sample Student and Faculty tables
StdSSN StdLastName StdMajor StdClass FacSSN FacLastName FacDept FacRank
123-45-

6789
WELLS IS FR

124-56-
7890

NORBERT FIN JR

876-54-
3210

COLAN MS SR 876-54-
3210

COLAN MS ASST

 098-76-
5432

VINCE MS ASST

 543-21-
0987

EMMANUEL MS PROF

Table 19 Sample Offering table

OfferNo CourseNo OffTerm FacSSN
1111 IS320 SUMMER
1234 IS320 FALL 098-76-5432
2222 IS460 SUMMER
3333 IS320 SPRING 098-76-5432
4444 IS320 SPRING 543-21-0987

Table 20 Result of one-sided outer join between Offering (Table 19) and Faculty
(Table 17)
OfferNo CourseNo OffTerm Offering.FacSSN Faculty.FacSSN FacLastName FacDept FacRank

1111 IS320 SUMMER
1234 IS320 FALL 098-76-5432 098-76-5432 VINCE MS ASST
2222 IS460 SUMMER
3333 IS320 SPRING 098-76-5432 098-76-5432 VINCE MS ASST
4444 IS320 SPRING 543-21-0987 543-21-0987 EMMANUEL MS PROF

Table 21 Student1 table
StdSSN StdLastName StdCity StdState StdMajor StdClass StdGPA
123-45-

6789
WELLS SEATTLE WA IS FR 3.00

124-56-
7890

NORBERT BOTHELL WA FIN JR 2.70

234-56-
7890

KENDALL TACOMA WA ACCT JR 3.50

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 4 Relational Data Model

 Page 28 of 29

Table 22 Student2 table
StdSSN StdLastName StdCity StdState StdMajor StdClass StdGAP
123-45-

6789
WELLS SEATTLE WA IS FR 3.00

995-56-
3490

BAGGINS AUSTIN WA FIN JR 2.90

111-56-
4490

WILLIAMS SEATTLE WA ACCT JR 3.40

Table 23 Student1 UNION student2
StdSSN StdLastName StdCity StdState StdMajor StdClass StdGPA
123-45-

6789
WELLS SEATTLE WA IS FR 3.00

124-56-
7890

NORBERT BOTHELL WA FIN JR 2.70

234-56-
7890

KENDALL TACOMA WA ACCT JR 3.50

995-56-
3490

BAGGINS AUSTIN TX FIN JR 2.90

111-56-
4490

WILLIAMS SEATTLE WA ACCT JR 3.40

Table 24 Student1 INTERESCT Student2
StdSSN StdLastName StdCity StdState StdMajor StdClass StdGAP
123-45-

6789
WELLS SEATTLE WA IS FR 3.00

Table 25 Student1 DIFFERENCE Student2
StdSSN StdLastName StdCity StdState StdMajor StdClass StdGPA
124-56-

7890
NORBERT BOTHELL WA FIN JR 2.70

234-56-
7890

KENDALL TACOMA WA ACCT JR 3.50

Table 26 Sample faculty table
FacSSN FacLastName FacDept FacRank FacSalary FacSupervisor FacHireDate
098-76-

5432
VINCE MS ASST 35000 654-32-1098 01-Apr-90

543-21-
0987

EMMANUEL MS PROF 120000 01-Apr-91

654-32-
1098

FIBON MS ASSC 70000 543-21-0987 01-Apr-89

765-43-
2109

MACON FIN PROF 65000 01-Apr-92

876-54-
3210

COLAN MS ASST 40000 654-32-1098 01-Apr-94

987-65-
4321

MILLS FIN ASSC 75000 765-43-2109 01-Apr-95

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 4 Relational Data Model

 Page 29 of 29

Table 27 Result table for SUMMARIZE Faculty ADD AVG(FacSalary) GROUP BY
FacDept

FacDept FacSalary
MS 66250
FIN 70000

Table 28 Sample Enrollment table

OfferNo StdSSN
1234 123-45-6789
1234 234-56-7890
4235 123-45-6789
4235 234-56-7890
4235 124-56-7890
6321 124-56-7890

Table 29 Sample Student table

StdSSN
123-45-6789
124-56-7890
234-56-7890

Table 30 Result of enrollment DIVIDEBY Student
OfferNo

4235

 Table 31 Summary of Meanings of the Relational Algebra Operators
Operator Meaning
Restrict (Select) Extracts rows that satisfy a specified condition.
Project Extracts specified columns.
Product Builds a table from two tables consisting of all possible combinations of rows, one

from each of the two tables.
Union Builds a table consisting of all rows appearing in either of two tables.
Intersect Builds a table consisting of all rows appearing in both of two specified tables.
Difference Builds a table consisting of all rows appearing in the first table but not in the second table.
Join Extracts rows from a product of two tables such that two input rows contributing to any

output row satisfy some specified condition.
Outer Join Extracts the matching rows (the join part) of two tables and the unmatched rows from both

tables.
Divide Builds a table consisting of all values of one column of a binary (2-column) table

that match (in the other column) all values in a unary (I-column) table.
Summarize Organizes a table on specified grouping columns. Specified aggregate computations are

made on each value of the grouping columns.

Table 32 Summary of Usage of the Relational Algebra Operators
Operator Notes
Union Input tables must be union compatible.
Difference Input tables must be union compatible.
Intersection Input tables must be union compatible.
Product Conceptually underlies join operator.
Restrict (Select) Uses a logical expression.
Project Eliminates duplicate rows if necessary.
Join Only matched rows are in the result. Natural join eliminates one join column.
Outer join Retains both matched and unmatched rows in the result. Uses null values for some

columns of the unmatched rows.
Divide Stronger operator than join, but less frequently used.
Summarize Specify grouping column(s) if any and aggregate function(s).

