
Product Information Management / IEM3613 MIT/IVE(TY) 
Chapter 5 Database Development 
 

 Page 1 of 29 
 

5 Database Development 
 
 
Introduction to Entity Relationship Diagrams 
 
Gaining an initial understanding of entity relationship diagrams (ERDs) requires 
careful study. This section introduces the Crow's Foot notation for ERDs, a popular 
notation supported by many CASE tools. To get started, let’s begin with the basic 
symbols of entity types, relationships, and attributes. Then go to explain cardinalities 
and their appearance in the Crow's Foot notation. Finally concluded by comparing 
the Crow's Foot notation to relational database diagrams. 
 

Entity Type a collection of entities (persons, places, events, or things) 
of interest in an application, represented by a rectangle in an entity 
relationship diagram. 

 
Basic Symbols 
 
ERDs have three basic elements: entity types, relationships, and attributes. Entity 
types (also known as object types) are collections of things of interest (entities) in an 
application. Entity types can represent physical objects such as books, people, and 
places, as well as events such as payments. Entities are uniquely identified to allow 
tracking across business processes. For example, customers have a unique 
identification to support order processing, shipment, and product warranty 
processes. In the Crow's Foot notation as well as most other notations, rectangles 
denote entity types. In Figure 1, the Course entity type represents the set of courses 
in the database. 

 
Figure 1 Entity relationship diagram illustrating basic symbols 

 
Attribute a property of an entity type or relationship. Each attribute has a 
data type that defines the kind of values and permissible operations on 
the attribute. 

 
Attributes are properties of entity types or relationships. An entity type should have a 
primary key as well as other descriptive attributes. Attributes are shown inside an 
entity type rectangle. If there are many attributes, the attributes can be suppressed 
and listed on a separate page. Some ERD drawing tools show attributes in a 
zoomed view, separate from the rest of the diagram. Underlining indicates that the 
attribute(s) serves as the primary key of the entity type. 

Product Information Management / IEM3613 MIT/IVE(TY) 
Chapter 5 Database Development 
 

 Page 2 of 29 
 

 
Relationship a named association among entity types. A relationship 
represents a two-way or bi-directional association among entities. Most 
relationships involve two entity types. 

 
Relationships are named associations among entity types. In the Crow's Foot 
notation, relationship names appear on the line connecting the entity types involved 
in the relationship. In Figure 1, the Has relationship shows that the Course and 
Offering entity types are directly related. Relationships store associations in both 
directions. For example, the Has relationship shows what offerings exist for a given 
course and what course corresponds to a given offering. The Has relationship is 
binary because it involves two entity types. In Section “Understanding 
Relationships”, presents examples of more complex relationships involving only one 
entity type (unary relationships) and more than two entity types (M-way 
relationships). 
 
In a loose sense, ERDs have a natural language correspondence. Entity types can 
correspond to nouns and relationships to verbs or prepositional phrases connecting 
nouns. In this sense, one can read an entity relationship diagram as a collection of 
sentences. For example, the ERD in Figure 1 can be read as "course has offerings." 
Note that there is an implied direction in relationships. In the other direction, one 
could write, "offering is given for a course." If practical, it is a good idea to use active 
rather than passive verbs for relationships. Therefore, Has is preferred as the 
relationship name. You should use the natural language correspondence as a guide 
rather than strict rule. For large ERDs, you will not always find a good natural 
language correspondence for all parts of the diagrams. 
 

Cardinality a constraint on the number of entities that participate in a 
relationship. In an ERD, the minimum and maximum number of entities 
are specified for both directions of a relationship. 

 
Relationship Cardinality 
 
Cardinalities constrain the number of objects that participate in a relationship. To 
depict the meaning of cardinalities, an object or instance diagram is useful. Figure 2 
shows a set of courses ({Course1, Course2, Course3}), a set of offerings ({Offering1, 
Offering2, Offering3, Offering4}), and connections between the two sets. In Figure 2, 
Course1 is related to Offering1, Offering2, and Offering3, Course2 is related to 
Offering4, and Course3 is not related to any Offering objects. Likewise. Offering1 is 
related to Course1, Offering2 is related to Course2, Offering3 is related to Course1, 
and Offering1 is related to Course2. From this instance diagram, we might conclude 
that each offering is related to exactly one course. In the other direction, each course 
is related to 0 or more offerings. 
 
 
 
 
 



Product Information Management / IEM3613 MIT/IVE(TY) 
Chapter 5 Database Development 
 

 Page 3 of 29 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 2  Instance diagram for the Has relationship 
 
Crow's Foot Representation of Cardinalities 
 
The Crow's Foot notation uses three symbols to represent cardinalities. The Crow's 
Foot symbol (two angled lines and one straight line) denotes the many cardinality. In 
Figure 3, the Crow's Foot symbol near the Offering entity type means that a course 
can be related to many offerings. The circle means a cardinality of zero, while a 
single line means a cardinality of one. 
 
To depict minimum and maximum cardinalities, the cardinality symbols are placed 
adjacent to each entity type in a relationship. The minimum cardinality symbol 
appears toward the relationship name while the maximum cardinality symbol 
appears toward the entity type. In Figure 3, a course is related to a minimum of zero 
offerings (circle in the inside position) and a maximum of many offerings (Crow's 
Foot in the outside position). Similarly, an offering is related to exactly one (one and 
only one) course as shown by the single vertical lines in both inside and outside 
positions. 
 

Existence Dependency an entity that cannot exist unless another related 
entity exists. A mandatory relationship produces an existence dependency. 

 
Classification of Cardinalities 
 
Cardinalities are classified by common values for minimum and maximum 
cardinality. Table 1 shows two classifications for minimum cardinalities. A minimum 
cardinality of one or more indicates a mandatory relationship For example, 
participation in the Has relationship is mandatory for each Offering entity due to the 
minimum cardinality of one. A mandatory relationship makes the entity type 
existence dependent on the relationship. The Offering entity type depends on the 
Has relationship because an Offering object cannot be stored without a related 
Course object. In contrast, a minimum cardinality of 0 indicates an optional 
relationship. For example, the Has relationship is optional to the Course entity type 
because a Course object can be stored without being related to an Offering object. 
Figure 4 shows that the Teaches relationship is optional for both entity types. 
 
 

Course 
 

Course1 
 

Course2 
 

Course3 

Offering 
 

Offering1 
 

Offering2 
 

Offering3 
 

Offering4 

Product Information Management / IEM3613 MIT/IVE(TY) 
Chapter 5 Database Development 
 

 Page 4 of 29 
 

 

 
 
 
 
 
 
 

Figure 3 Entity relationship diagram with cardinalities noted 
 

Table 1 Summary of cardinality classification 
Classification Cardinality Restrictions 

Mandatory Min. Card. ≤ 1 
Optional Min. Card. = 0 

Functional or 
single-valued 

Max. Card. = 1 

1-M Max. Card. = 1 in one 
direction 

 Max. Card. > 1 in other 
direction 

M-N Max. Card. is > 1 in both 
directions 

1-1 Max. Card. = 1 in both 
directions 

 
 

 
Figure 4 Optional relationship for both entity types 

 
Table 1 also shows several classifications for maximum cardinalities. A maximum 
cardinality of one means the relationship is single-valued or functional. For example, 
the Has and Teaches relationships are functional for Offering because an Offering 
object can be related to a maximum of one Course and one Faculty object. The word 
"function" comes from mathematics where a function gives one value. A relationship 
that has a maximum cardinality of one in one direction and more than one (many) in 
the other direction is called a 1-M (read one-to-many) relationship. Both the Has and 
Teaches relationships are 1-M. 
 
Similarly, a relationship that has a maximum cardinality of more than one in both 
directions is known as an M-N (many-to-many) relationship. In Figure 5, the 

Crows Foot: 
Many cardinality 

Circle: 
Zero cardinality 

Outside symbol: 
Maximum cardinality 

Inside symbol: 
Minimum cardinality 

Single line: 
One cardinality 



Product Information Management / IEM3613 MIT/IVE(TY) 
Chapter 5 Database Development 
 

 Page 5 of 29 
 

TeamTeaches relationship allows multiple professors to jointly teach the same 
offering, as shown in the instance diagram of Figure 6. M-N relationships are 
common in business databases. For example, M-N relationships usually represent 
the connection between parts and suppliers, authors and books, and skills and 
employees. Many suppliers can supply a part and a supplier can supply many parts. 
 

 
Figure 5 M-N and 1-1 relationship examples 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 Instance diagram for the M-N Teameaches relationship 
 
Less common are 1-1 relationships in which the maximum cardinality equals one in 
both directions. For example, the Worksln relationship in Figure 5 allows a faculty to 
be assigned to one office and an office to be occupied by at most one faculty. 
 
Comparison to Relational Database Diagrams 
 
To finish this section, let us compare the notation in Figure 3 with the relational 
database diagrams (from Microsoft Access) with which you are familiar. It is easy to 
become confused between the two notations. Some of the major differences are 
listed below. To help you visualize these differences, Figure 7 shows a relational 
database diagram for the Course-Offering example. 
 
1. Relational database diagrams do not use names for relationships. Instead foreign 

keys represent relationships. The ERD notation does not use foreign keys. For 
example, Offering.CourseNo is a column in Figure 7 but not an attribute in Figure 
3. 

 
2. Relational database diagrams show only maximum cardinalities. 

Faculty 
 

Faculty1 
 

Faculty2 
 

Faculty3 

Offering 
 
Offering1 
 
Offering2 
 
Offering3 

Product Information Management / IEM3613 MIT/IVE(TY) 
Chapter 5 Database Development 
 

 Page 6 of 29 
 

 
3. Some ERD notations (including the Crow's Foot notation) allow both entity types 

and relationships to have attributes. Relational database diagrams only allow 
tables to have columns. 

 
4. Relational database diagrams allow a relationship between two tables. Some 

ERD notations (although not the Crow's Foot notation) allow M-way relationships 
involving more than two entity types. The next section shows how to represent M-
way relationships in the Crow's Foot notation. 

 
5. In some ERD notations (although not the Crow's Foot notation), the position of 

the cardinalities is reversed. 
 
Understanding Relationship 
 
This section explores the entity relationship notation in more depth by examining 
important aspects of relationships. The first subsection describes identification 
dependency, a specialized kind of existence dependency. The second subsection 
describes three important relationship patterns: (1) relationships with attributes, (2) 
self-referencing relationships, and (3) associative entity types representing multi-way 
(M-way) relationships. The final subsection describes an important equivalence 
between M-N and 1-M relationships. 
 

Weak Entity an entity type that borrows all or part of its primary key from 
another entity type Identifying relationships indicate the entity types that 
supply components of the borrowed primary key. 

 

 
Figure 7 Relational database diagram for the Course-Offering example 



Product Information Management / IEM3613 MIT/IVE(TY) 
Chapter 5 Database Development 
 

 Page 7 of 29 
 

Identification Dependency (Weak Entities and Identifying 
Relationships) 
 
In an ERD, some entity types may not have their own primary key. Entity types 
without their own primary key must borrow part (or all) of their primary key from other 
entity types. Entity types that borrow part or their entire primary key are known as 
weak entities. The relationship(s) that provides components of the primary key is 
known as an identifying relationship. Thus, an identification dependency involves a 
weak entity and one or more identifying relationships. 
 
Identification dependency occurs because some entities are closely associated 
with other entities. For example, a room does not have a separate identity from its 
building a room is physically contained in a building. You can reference a room only 
by providing its associated building identifier. In the ERD for buildings and rooms 
(Figure 8), the Room entity type is identification dependent on the Building entity 
type in the Contains relationship. A solid relationship line indicates an identifying 
relationship. For weak entities, the underlined attribute (if present) is part of the 
primary key. but not the entire primary key. Thus. the primary key of Room is a 
combination of BldgID and RoomNo. As another example. Figure 9 depicts an 
identification dependency involving the weak entity State and the identifying 
relationship Holds. 
 
Identification dependency is a specialized kind of existence dependency. Recall that 
an existent-dependent entity type has a mandatory relationship (minimum cardinality 
of one). Weak entities are existent dependent on the identifying relationships. In 
addition to the existence dependency, weak entities borrow part or their entire 
primary key. 
 
The next section shows several additional examples of identification dependency in 
the discussion of associative entity types and M-way relationships. The use of 
identification dependency is necessary for associative entity types. 
 

 
Figure 8 Identification dependency example 

 

Product Information Management / IEM3613 MIT/IVE(TY) 
Chapter 5 Database Development 
 

 Page 8 of 29 
 

 
Figure 9 Another identification dependency example 

 
Relationship Patterns 
 
This section discusses three patterns for relationships that you will encounter in 
database development efforts: 
1. M-N relationships with attributes. 
2. Self-referencing (unary) relationships. 
3. Associative entity types representing M-way relationships. 
 
Although these relationship patterns do not dominate ERDs, they are important when 
they occur. You need to study these patterns carefully to correctly apply them in 
database development efforts. 
 
M-N Relationships with Attributes 
 
As briefly mentioned in introduction section, relationships can have attributes. This 
situation typically occurs with M-N relationships. In an M-N relationship attributes are 
associated with the combination of entity types, not just one of the entity types. If an 
attribute is associated with only one entity type, then it should be part of that entity 
type, not the relationship. Figures 10 and 11 depict M-N relationships with attributes. 
In Figure 10, the attribute Enr-Grade is associated with the combination of a student 
and offering, not either one alone. For example, the Enrollsln relationship records the 
fact that the student with social security number 123-77-9993 has a grade of 3.5 in 
the offering with offer number 1256. In Figure 11(a), the attribute Qty represents the 
quantity of a part supplied by a given supplier. In Figure 11(b), the attribute 
AuthOrder represents the order in which the author's name appears in the title of a 
book. To reduce clutter on a large diagram, the attributes of relationships may not be 
shown. 
 
1-M relationships also can have attributes, but 1-M relationships with attributes are 
much less common than M-N relationships with attributes. In Figure 12, the 
Commission attribute is associated with the Lists relationship, not with either the 
Agent or Home entity type. A home will only have a commission if an agent lists it. 
 



Product Information Management / IEM3613 MIT/IVE(TY) 
Chapter 5 Database Development 
 

 Page 9 of 29 
 

 

 
Figure 10 M-N relationship with an attribute 
 

 
Figure 11 Additional M-N relationships with attributes 
 
 

 
Figure 12 1-M relationship with an attribute 
 

 
Figure 13 Examples of self-referencing (unary) relationships 
 
Self-Referencing (Unary) Relationships 
 
A self-referencing (unary) relationship involves connections among members of the 
same set. Self-referencing relationships are sometimes called reflexive relationships 
because they are like a reflection in a mirror. Figure 13 displays two self-referencing 
relationships involving the Faculty and Course entity types. Both relationships 

Product Information Management / IEM3613 MIT/IVE(TY) 
Chapter 5 Database Development 
 

 Page 10 of 29 
 

involve two entity types that are the same (Faculty for Supervises and Course for 
PreReqTo). These relationships depict important concepts in a university database. 
The Supervises relationship depicts an organizational chart, while the PreReqTo 
relationship depicts dependencies among courses that can affect a student's course 
planning. 
 
For self-referencing relationships, it is important to distinguish between 1-M and M-N 
relationships. An instance diagram can help you understand the difference. Figure 
14(a) shows an instance diagram for the Supervises relationship. Notice that each 
faculty can have at most one superior. For example, Faculty2 and Faculty3 have 
faculty1 as a superior. Therefore, Supervises is a 1-M relationship because each 
faculty can have at most one supervisor. In contrast, there is no such restriction in 
the instance diagram for the PreReqTo relationship Figure 14(b). For example, both 
IS480 and S460 are prerequisites to IS461. Therefore, PreReqTo is an M-N 
relationship because a course can be a prerequisite to many courses and a course 
can have many prerequisites. 
 
Self-referencing relationships occur in a variety of business situations. Any data that 
can he visualized like Figure 14 can be represented as a self-referencing 
relationship. Typical examples include hierarchical charts of accounts, genealogical 
charts, part designs, and transportation routes. In these examples, self-referencing 
relationships are an important part of the database. 
 
There is one other noteworthy aspect of self-referencing relationships. Sometimes a 
self-referencing relationship is not needed. For example, if you only want to know 
whether an employee is a supervisor, a self-referencing relationship is not needed. 
Rather, an attribute can be used to indicate whether an employee is a supervisor. 
 
 
Associative Entity Types Representing Multi-way (M-Way) 
Relationships 
 
Some ERD notations support relationships involving more than two entity types, 
known as M-way (multi-way) relationships where the M means more than two. For 
example, the Chen ERD notation (with diamonds for relationships) allows 
relationships to connect more than two entity types, as depicted in Figure 15. The 
Uses relationship lists suppliers and parts used on projects. For example, a 
relationship instance involving Supplier, Part1, and Project1 means that Supplier1 
Supplies Part1 on Project1. An M-way relationship involving three entity types is 
called a ternary relationship. 
 
Although you cannot directly represent M-way relationships in the Crow’s Foot 
notation, you should understand how to indirectly represent them. You use an 
associative entity type and a collection of binary relationships to represent an M-way 
relationship. In Figure 16, three 1-M relationships link the associative entity type, 
Uses, to the Part, Supplier, and Project entity type. The Uses entity type is 
associative because its role is to connect other entity types. Because associative 
entity types provide a connecting role, they are sometimes given names using active 
verbs. In addition, associative entity types are always weak, as they must borrow the 



Product Information Management / IEM3613 MIT/IVE(TY) 
Chapter 5 Database Development 
 

 Page 11 of 29 
 

entire primary key. For example, the Uses entity type obtains its primary key through 
the three identifying relationships. 
 
As another example, Figure 17 shows the associative entity type Provides that 
connects the Employees, Skill, and Project entity types. An example instance of the 
Provides entity type contains Employee) providing Skill1 on Project1. 
 

Self-Referencing Relation-ship a relationship involving the same entity 
type. Self-referencing relationships represent associations among members 
of the same set. 

 

 
Figure 14 Instance diagrams for self-referencing relationships 

 
Associative Entity Type a weak entity that replaces an M-way 
relationship. An associative entity type depends on two or more entity types 
tier its primary key. 

 

 
Figure 15 M-way (ternary) relationship using Chen notation 

 
 
 

Product Information Management / IEM3613 MIT/IVE(TY) 
Chapter 5 Database Development 
 

 Page 12 of 29 
 

 
Figure 16 Associate entity type to represent a ternary relationship 

 

 
Figure 17 Associative entity type connecting Employees, Skill, and Project 

 

 
Figure 18 EnrollsIn M-N relationship (Figure 10) transformed into 1-M relationship. 

 
The issue of when to use an associative entity type representing an M-way 
relationship can be difficult to understand. If a database only needs to record pairs of 
facts, an associative entity type is not needed. For example, if a database only 
needs to record supplies a part and what projects use a part, then an associative 
entity type should not be used. In this case, there should be binary relationships 
between Supplier and Part and between Project and Part. You should use an 



Product Information Management / IEM3613 MIT/IVE(TY) 
Chapter 5 Database Development 
 

 Page 13 of 29 
 

associative entity type when the database should record combinations of three (or 
more) objects rather than just combinations of two objects. For example, if a 
database needs to record which supplier provides parts on specific projects, an 
associative entity type is needed. 
 
Equivalence between 1-M and M-N Relationships 
 
To improve your understanding of M-N relationships, you should know an important 
equivalence for M-N relationships. An M-N relationship can he replaced by an 
associative entity type and two 1-M relationships. Figure 18 shows the Enrollsln 
(Figure 10) relationship converted to this 1-M style. In. Figure 18, two identifying 
relationships and an associative entity type replace the Enrollsln relationship. The 
relationship name (Enrollsln) has been changed to a noun (Enrollment) to follow the 
convention of nouns for entity type names. The 1-M style is similar to the 
representation in a relational database diagram. If you feel more comfortable with the 
1-M style, then use it. In terms of the ERD the M-N and 1-M styles have the same 
meaning. 
 
The transformation of a binary M-N relationship into 1-M relationships is similar to 
representing an M-way relationship using 1-M relationships. Whenever an M-N 
relationship is represented as an associative relationship and two 1-M relationships, 
the new entity type is identification dependent on both 1-M relationships, as shown in 
Figure 18. Similarly, when representing M-way relationships, the associative entity 
type is identification dependent on all 1-M relationships, as shown in Figures 16 and 
17. 
 
There is one situation when the 1-M style is preferred to the M-N style. When an M-N 
relationship must be related to other entity types in another relationship, use the 1-M 
style. For example, assume that in addition to enrollment in a course offering, 
attendance in each class session should be recorded. In this situation, the 1-M style 
is preferred because it is necessary to link an enrollment with attendance records. 
Figure 19 shows the Attendance an entity type added to the ERD of Figure 18. Note 
that an M-N relationship between the Student and Offering entity types would not 
have allowed another relationship with Attendance. 
 
Figure 19 provides other examples of identification dependencies. The solid line by 
Attendance means that Attendance is identification dependent on Enrollment in the 
Record- relationship. The primary key of Attendance consists of AttDate along with 
the primary key of Enrollment. Similarly, is identification dependent on both Student 
and Offering. The primary key of Enrollment is a combination of StdSSN and 
OfferNo. 
 
Classification in the Entity Relationship Model 
 
People classify objects to better understand their environment. For example, animals 
are classified into mammal, reptiles, and other categories to understand the 
similarities and differences among different species. In business classification is also 
pervasive. Classification can he applied to investments, employees, customers, 
loans, parts, and so on. For example, when applying for a home mortgage, an 

Product Information Management / IEM3613 MIT/IVE(TY) 
Chapter 5 Database Development 
 

 Page 14 of 29 
 

important distinction is between fixed-rate and adjustable-rate mortgages. Within 
each kind of mortgage, there are many variations distinguished by features such as 
repayment period, prepayment penalties, and amount of loan. 
 
This section describes ERD notation to support classification. You will learn to use 
generalization hierarchies, specify cardinality constraints for generalization 
hierarchies, and use multiple-level generalization hierarchies for complex 
classifications. 
 

Relationship Equivalence is an M-N relationship can be replaced by an 
associative entity type and two identifying 1-M relationship. 

 
 

 
Figure 19 Attendance entity type added to the ERD of Fig. 18 

 
 
Generalization Hierarchies 
 
Generalization hierarchies allow entity types to be related by the level of 
specialization. Figure 20 depicts a generalization hierarchy to classify employees as 
salaried versus hourly. Both salaried and hourly employees are specialized kinds of 
employees. The Employee entity type is known as the supertype (or parent). The 
entity types, SalaryEmp and HourlyEmp are known as the (or children): Because 
each subtype object is a supertype object, the relationship between a subtype and a 
supertype is known as ISA. For example, a salaried employee is an employee. 
Because the relationship name ISA is always the same, it is net shown on the 
diagram. 
 
Inheritance supports sharing between a supertype and its subtypes. Because every 
subtype object is also a supertype object, the attributes of the supertype also apply 
to all subtypes. For example, every entity of SalaryEmp has an employee number, 
name, and hiring date because it is also an entity of Employee. Inheritance means 
that the attributes of a supertype are automatically part of its subtypes. That is, each 
subtype inherits the attributes of its supertype. For example, the attributes of the 
SalaryEmp entity type are its direct attribute (EmpSalary) and its inherited attributes 
from Employee (EmpNo, EmpName, EmpHireDate, etc.). Inherited attributes are not 
shown in an ERD. Whenever you have a subtype, assume that it inherits the 
attributes from its supertype. 
 



Product Information Management / IEM3613 MIT/IVE(TY) 
Chapter 5 Database Development 
 

 Page 15 of 29 
 

Generalization Hierarchy a collection Of entity types arranged in a 
hierarchical structure to show similarity in attributes Each subtype or child 
entity represents a subset of its supertype of parent entity. 

 
 

Inheritance a data modeling feature that supports sharing of attributes 
between a supertype and a subtype. Subtypes inherit attributes from their 
supertype. 

 

 
Figure 20 Generalization hierarchy for employees 

 
Disjointness and Completeness Constraints 
 
Generalization hierarchies do not show cardinalities because they are always the 
same. Rather, disjointness and completeness constraints can be shown. 
Disjointness means that subtypes in a generalization hierarchy do not have any 
entities in common. In Figure 21, the generalization hierarchy is disjoint because a 
security cannot be both a stock and a bond. In contrast, the generalization hierarchy 
in Figure 22 is not disjoint because teaching assistants can be considered both 
students and faculty. Thus. the set of students overlaps with the set of faculty. 
Completeness means that every entity of a supertype must be an entity in one of the 
subtypes in the generalization hierarchy. The completeness constraint in Figure 21 
means that every security must be either a stock or a bond. 
 
Some generalization hierarchies lack both disjointness and completeness 
constraints. In Figure 20, the lack of a disjointness constraint means that some 
employees can be both salaried and hourly. The lack of a completeness constraint 
indicates that some employees are not paid by salary or the hour (perhaps by 
commission). 
 

Product Information Management / IEM3613 MIT/IVE(TY) 
Chapter 5 Database Development 
 

 Page 16 of 29 
 

 
Figure 21 Generalization hierarchy for securities 

 

 
Figure 22 Generalization hierarchy for university people 

 
Multiple Levels of Generalization 
 
Generalization hierarchies can be extended to more than one level. This practice can 
be useful in disciplines such as investments where knowledge is highly structured, In 
Figure 23, there are two levels of subtypes beneath securities. Inheritance emend, to 
all subtypes, direct and indirect. Thus, both the Common and Preferred entity types 
inherit the attributes of Stuck (the immediate parent) and Security (the indirect 
parent). Note that disjointness and completeness constraints can he made for each 
group of subtypes. 
 
 
Review of Notation and comparison to other notations 
 
You have seen a lot of ERD notation in the previous sections of this chapter. It is 
easy to become overwhelmed without a review to depict the most important points. 
To help you recall the notation introduced in the earlier sections, Table 2 presents a 
summary. 
 



Product Information Management / IEM3613 MIT/IVE(TY) 
Chapter 5 Database Development 
 

 Page 17 of 29 
 

 
Comprehensive ERD Example 
 
Figure 24 demonstrates most of the ERD notation for the university database of last 
chapter. Some of the attributes are omitted for brevity. Note that the Enrollment 
entity type (associative) and the identifying relationships (Registers and Grants) 
could appear as an M-N relationship as previously shown in Figure 10. 
 
 
Diagram Variations 
 
The ERD notation presented in this chapter is similar but not identical to what you 
may encounter later. There is no standard notation for ERDs. There are perhaps four 
to six reasonably popular ERD notations, each having its own small variations that 
appear in practice. The notation in this chapter comes from the Crow's Foot stencil in 
Visio Professional 5 with the addition of tile generalization notation. In Next chapter 
on Object Technology, a case presents the class diagram notation of the Unified 
Modeling Language, an emerging notation for data modeling. The notations that you 
encounter in practice will depend on factors such as the data-modeling tool (if any) 
used in your organization and the industry. One thing is certain: you should be 
prepared to adapt to the notation in use. 
 

 
Figure 23 Multiple levels of gener-alization hierarchies 

 
 
Symbol Variations 
 
Because there is no widely accepted ERD standard, different symbols can be used 
to represent the same concept. Relationship cardinalities are a source of wide 
variation. You should pay attention to the placement of the cardinality symbols. The 
notation in this chapter places the symbols close to the "far" entity type, while other 
notations place the cardinality symbols close to the "near" entity type. The notation in 
this chapter uses a visual representation of cardinalities with the minimum and 
maximum cardinalities given by three symbols. Other notations use a text 
representation with letters and integers instead of symbols. For example, Figure 7.25 

Product Information Management / IEM3613 MIT/IVE(TY) 
Chapter 5 Database Development 
 

 Page 18 of 29 
 

shows a Chen ERR of Figure 7.3 with the position of cardinalities reversed, 
cardinalities depicted with text, and relationships denoted by the diamonds. 
 
Other symbol variations are visual representations for certain kinds of entity types. In 
some notations, weak entities and M-N relationships have special representations. 
Weak entities are sometimes enclosed in double rectangles. Identifying relationships 
are sometimes enclosed in double diamonds. M-N relationships with attributes are 
sometimes shown as a rectangle with a diamond inside denoting the dual qualities 
(both relationship and entity type). 
 
 
Rule Variations 
 
In addition to symbol variations, there are also rule variations, as shown in the 
following list. In each restriction, there is a remedy. For example, if only binary 
relationships are supported. M-way relationships must be represented as an 
associative entity type with 1-M relationships. 
 

 
Figure 24 ERD for the university database 

 
 

 
Figure 25 Chen notation for the course-offering ERD 

C 



Product Information Management / IEM3613 MIT/IVE(TY) 
Chapter 5 Database Development 
 

 Page 19 of 29 
 

 
1. Some notations do not support M-way relationships. 
2. Some notations do not support M-N relationships. 
3. Some notations do not support relationships with attributes. 
4. Some notations do not support self-referencing (unary) relationships. 
5. Some notations permit relationships to be connected to other relationships. 
6. Some notations show foreign keys as attributes. 
7. Some notations allow attributes to have more than one value (multi-valued 

attributes). 
 
Relational database diagrams in Microsoft Access have most of these restrictions. 
Relational database diagrams do not support M-way relationships and M-N 
relationships. Despite these restrictions, relational database diagrams are no less 
expressive than notations without these restrictions. In certain situations, you may 
need additional symbols, but the same concept can be represented. For example, 
relational database diagrams may require more symbols to represent an M-N 
relationship, but an M-N relationship can still be represented. 
 
Converting an ERD to relational tables 
 
Conversion from the ERD notation to relational tables is important because of 
industry practice. Computer-aided software engineering (CASE) tools support some 
kind of entity relationship notation. It is common practice to use a CASE tool as an 
aid in developing an ERD. Because most commercial DBMSs use the Relational 
Model, you must convert your ERD into relational tables to implement your database 
design. 
 
This section describes the conversion process in two parts. First, the basic rules to 
convert entity types, relationships and attributes are described. Second, specialized 
rules to convert optional 1-M relationships, generalization hierarchies, and 1-1 
relationships are shown. 
 
Basic Conversion Rules 
 
The rules that follow convert everything on an ERD except generalization 
hierarchies. You should apply these rules until everything in your ERD is converted. 
The first two rules should be used before the other rules. As you apply these rules, 
you can use a check mark to indicate what parts of your ERD have been converted. 
 
1. Entity Type Rule: Each entity type (except subtypes) becomes a table. The 

primary key of the entity type (if not weak) becomes the primary key of the table. 
The attributes of the entity type become columns in the table. This rule should be 
used first before the relationship rules. 

2. 1-M Relationship Rule: Each 1-M relationship becomes a foreign key in the 
table corresponding to the many entity type (the entity type near the Crow's Foot 
symbol). If the minimum cardinality is one, the foreign key cannot accept null 
values. 

Product Information Management / IEM3613 MIT/IVE(TY) 
Chapter 5 Database Development 
 

 Page 20 of 29 
 

3. M-N Relationship Rule: Each M-N relationship becomes a separate table. The 
primary key of the table is a combined key consisting of the primary keys of the 
entity types participating in the M-N relationship. 

4. Identification Dependency Rule: Each identifying relationship (denoted by a 
solid relationship line) adds a column to a primary key. The primary key of the 
table corresponding to the weak entity type consists of: 

(i) The underlined local key (if any) in the weak entity type and 
(ii) The primary key(s) of the entity type(s) connected by the identifying 

relationship(s). 
 
To understand these rules, you can apply them to some of the ERDs given earlier in 
the chapter. Using Rules 1 and 2, you can convert Figure 26 into the CREATE 
TABLE statements shown in Figure 27. Rule 1 is applied to convert the Course and 
Offering entity types to tables. Then, Rule 2 is applied to convert the Has relationship 
to a foreign key (Offering.CourseNo). The Offering table contains the foreign key 
because the Offering entity type has the maximum cardinality of one. 
 
Next, you can apply the M-N relationship rule (Rule 3) to convert the ERD in Figure 
28. Following this rule leads to the Enrolls In table in Figure 29. The primary key of 
Enrolls In is a combination of the primary keys of the Student and the Offering entity 
types. 
 
 
To gain practice with the identification dependency rule (Rule 4), you can use it to 
convert the ERD in Figure 30. The result of converting Figure 30 is identical to Figure 
27 except that the Enrollsln table is renamed Enrollment. The ERD in Figure 30 
requires two applications of the identification dependency rule. Each application of 
the identification dependency rule adds a component to the primary key of the 
Enrollment table. 
 

 
Figure 26 ERD with 1-M relationship 

 
CREATE TABLE Course 

( CourseNo CHAR(6) NOT NULL, 
CrsDesc VARCHAR, 
CrsUnits SMALLINT 
CONSTRAINT PKCourse PRIMARY KEY (CourseNo) ) 
 
CREATE TABLE Offering 



Product Information Management / IEM3613 MIT/IVE(TY) 
Chapter 5 Database Development 
 

 Page 21 of 29 
 

( Off erNo LONG NOT NULL, 
Off Location CHAR(20), 

CourseNo CHAR(6) NOT NULL, 
OffTime  TIME, 
 
…., 
 
 
CONSTRAINT PKOffering PRIMARY KEY (OfferNo), 
CONSTRAINT FKCourseNo FOREIGN KEY (CourseNo) REFERENCES Course ) 

Figure 27 Conversion of Figure 26 
 

 
Figure 28 M-N relationship with an attribute 

 
CREATE TABLE Student 
(StdSSN CHAR(11) NOT NULL 
StdName VARCHAR,   
CONSTRAINT PKStudent PRIMARY KEY (StdSSN))  
 
CREATE TABLE Offering  
(OfferNo LONG NOT NULL 
OffLocation VARCHAR, 
OffTime TIME, 
 
….. 
 
CONSTRAINT PKOffering PRIMARY KEY (OfferNo) ) 
CREATE TABLE Enrolls In 
(OfferNo LONG NOT NULL, 
StdSSN CHAR(11) NOT NULL, 
EnrGrade DECIMAL(2,1), 
CONSTRAINT PKEnrolls_In PRIMARY KEY (OfferNo, StdSSN),  
CONSTRAINT FKOfferNo FOREIGN KEY (OfferNo) REFERENCES Offering, 
CONSTRAINT FKStdSSN FOREIGN KEY (StdSSN) REFERENCES Student ) 
Figure 29 Conversion of Figure 28 
 

 
 

Product Information Management / IEM3613 MIT/IVE(TY) 
Chapter 5 Database Development 
 

 Page 22 of 29 
 

 

 
Figure 30 Enrolls_ln M-N relationship transformed into 1-M relationship 

 
You also can apply the rules to convert self-referencing relationships. For example, 
you can apply the 1-M and M-N relationship rules to convert the self-referencing 
relationships in Figure 31. Using the 1-M relationship rule, the Supervises 
relationship converts to a foreign key in the Faculty table. as shown in Figure 32. 
Using the M-N relationship Rile, the Prereq_To relationship converts to the 
Prereq_To table with a combined primary key of the course number of the 
prerequisite course and the course number of the dependent course. 
 
You also can apply conversion rules to more complex identification dep-endencies, 
as depicted in Figure 33. The first part of the conversion is identical to the conversion 
of Figure 30. Application of' the 1-M rule makes the combination of StdSSN and 
OfferNo foreign keys in the Attendance table (Figure 34). Note that the foreign keys 
in Attendance refer to Enrollment, not to Student and Offering. Finally, one 
application of the identification dependency rule makes the combination of 
StdSSN.OfferNo and AttDate the primary key of the Attendance table. 

 
Figure 31 Example of 1-M and M-N self-referencing relationships 
    
CREATE TABLE Faculty   
(FacSSN CHAR(11)  NOT NULL, 
FacName VARCHAR, 
FacSupervisor CHAR(11),  
CONSTRAINT PKFaculty PRIMARY KEY (FaCSSN),  
FOREIGN KEY (FacSupervisor) REFERENCES Faculty)  
 
CREATE TABLE Course  
(CourseNo CHAR(6) NOT NULL, 



Product Information Management / IEM3613 MIT/IVE(TY) 
Chapter 5 Database Development 
 

 Page 23 of 29 
 

CrsDesc  VARCHAR, 
CrsUnits SMALLINT  
CONSTRAINT PI(Course PRIMARY KEY (CourseNo) ) 
 
CREATE TABLE Prereq_To 
(Prereq_CNo CHAR(6) NOT NULL, 
Depend CNo CHAR(6) NOT NULL, 
CONSTRAINT PKPrereq_To PRIMARY KEY (Prereq_CNo, Depend CNo), 
CONSTRAINT FKPrereq_CNo FOREIGN KEY (Prereq_CNo) REFERENCES 
Course, 
CONSTRAINT FKDepend_CNo FOREIGN KEY (Depend_CNo) REFERENCES 
Course) 

Figure 32 Conversion of Figure 31. 

 
Figure 33 ERD with two weak entity types 

 
 
CREATE TABLE Attendance 
(OfferNo LONG  NOT NULL, 
StdSSN CHAR(11) NOT NULL, 
AttDate Date  NOT NULL, 
Present BOOL, 
CONSTRAINT PKAttendance PRIMARY KEY (OfferNo, StdSSN, AttDate), 
CONSTRAINT FKOfferNoStdSSN FOREIGN KEY (OfferNo, StdSSN) 
REFERENCES Enrollment) 

Figure 34 Conversion of Attendance entity type in Figure 33 
 

Product Information Management / IEM3613 MIT/IVE(TY) 
Chapter 5 Database Development 
 

 Page 24 of 29 
 

 
Figure 35 Optional 1-M relationship 
Converting Optional 1-M Relationships 
 
Using the 1-M relationship rule results in null values when converting optional 
relationships. Recall that a relationship with a minimum cardinality of 0 is optional. 
For example. the Teaches relationship (Figure 35) is optional to Offering because an 
Offering object can be stored without being related to a Faculty object. Converting 
Figure 35 results in two tables (Faculty and Offering) as well as a foreign key 
(FacSSN) in the Offering table. The foreign key should allow null values because the 
minimum cardinality of the Offering entity type in the relationship is optional (0). 
However, null values can lead to complications in evaluating the results of queries. 
 
To avoid null values when converting optional 1-M relationships, you can apply Rule 
5 below. Rule 5 converts optional 1-M relationships into a table instead of a foreign 
key. Figure 36 shows an application of Rule 5 to the ERD in Figure 35. The Teaches 
table contains the foreign key FacSSN. Note that the FaCSSN column does not 
permit null values. The Offering table no longer has a foreign key referring to the 
Faculty table. 
 
5. Optional I-M Relationship Rule: Each 1-M relationship with a minimum 

cardinality of 0 and a maximum cardinality of 1 becomes a new table. The 
primary key of the new table is the primary key of the entity type on the many 
side of the relationship. The primary key of the other entity type becomes a 
foreign key in the new table. The foreign key in the new table does not permit null 
values. 

 
Rule 5 is controversial. Using Rule 5 in place of Rule 2 (1-M Relationship Rule) 
avoids null values in foreign keys. However, using Rule 5 results in more tables. 
Query formulation can be more difficult with additional tables. In addition, query 
execution can be slower due to extra joins. The choice of using Rule 5 in place of 
Rule 2 depends on the importance of avoiding null values versus avoiding extra 
tables. In many databases, avoiding extra tables may be more important than 
avoiding null values. 
 
 
Converting Generalization Hierarchies 
 
The approach to convert generalization hierarchies mimics the entity relationship 
notation as much as possible. Rule 6 converts each entity type of a generalization 
hierarchy into a table. The only column appearing in a table that is different from the 
ERD is the inherited primary key. In Figure 37 EmpNo is a column in the SalaryEmp 
and HourlyEmp tables because it is the primary key of the parent entity type 



Product Information Management / IEM3613 MIT/IVE(TY) 
Chapter 5 Database Development 
 

 Page 25 of 29 
 

(Employee). In addition, the SalarvEmp and HourlyEmp tables have a foreign key 
constraint referring to the Employee table. The CASCADE delete option is set in both 
foreign key constraints (see Figure 38). 
 
6. Generalization Hierarchy Rule: Each entity type of a generalization hierarchy 

becomes a table. The Columns of a table are the attributes of the corresponding 
entity type plus the primary key of the parent entity type. For each table 
representing a subtype, define a foreign key constraint that references the table 
corresponding to the parent entity type. Use the CASCADE option for deletions of 
referenced rows. 

 
CREATE TABLE Faculty 
(FacSSN CHAR(11) NOT NULL, 
FacName  VARCHAR, 
…, 
CONSTRAINT PKFaculty PRIMARY KEY (FacSSN)) 
 
CREATE TABLE Offering 
(OfferNo LONG NOT NULL, 
Off Location VARCHAR, 
OffTime  TIME, 
…, 
CONSTRAINT PKOffering PRIMARY KEY (OfferNo) ) 
 
CREATE TABLE Teaches 
(OfferNo LONG NOT NULL, 
FacSSN CHAR(11) NOT NULL, 
CONSTRAINT PKTeaches PRIMARY KEY (OfferNo), 
CONSTRAINT FKFacSSN FOREIGN KEY (FacSSN) REFERENCES Faculty) 
Figure 36 Conversion of Figure 35. 
 

 
Figure 37 Generalization hierarchy for employees 
 
Rule 6 also applies to generalization hierarchies of more than one level. To convert 
the generalization hierarchy of Figure 39 five tables are produced (see Figure 40). In 
each table, the primary key of the parent (Security) is included. In addition, foreign 
key constraints are added in each table corresponding to a subtype. 
 

Product Information Management / IEM3613 MIT/IVE(TY) 
Chapter 5 Database Development 
 

 Page 26 of 29 
 

CREATE TABLE Employee  
(EmpNo  LONG NOT NULL, 
EmpName  VARCHAR, 
EmpHireDate DATE,  
CONSTRAINT PKEmployee PRIMARY KEY (EmpNo) ) 
 
CREATE TABLE SalaryEmp 
(EmpNo  LONG NOT NULL, 
EmpSalary   DECIMAL(10,2), 
CONSTRAINT PKSalaryEmp PRIMARY KEY (EmpNo) ,  
CONSTRAINT FKSalaryEmp FOREIGN KEY (EmpNo) REFERENCES 
Employee 
ON DELETE CASCADE) 
 
CREATE TABLE HourlyEmp 
(EmpNo  LONG NOT NULL, 
EmpRate  DECIMAL(10,2), 
CONSTRAINT PKHourlyEmp PRIMARY KEY (EmpNo) ,  
CONSTRAINT FKHourIyEmp FOREIGN KEY (EmpNo) REFERENCES 
Employee 
ON DELETE CASCADE) 
Figure 38 Conversion of generalization hierarchy in Figure 37 
 

 
Figure 39 Multiple levels of genera-lization hierarchies 

 
CREATE TABLE Security 
(Symbol CHAR(6) NOT NULL, 
SecName VARCHAR, 
LastClose DECIMAL(10,2), 
CONSTRAINT PKSecurity PRIMARY KEY (Symbol) ) 
 
CREATE TABLE Stock 
(Symbol CHAR(6) NOT NULL, 



Product Information Management / IEM3613 MIT/IVE(TY) 
Chapter 5 Database Development 
 

 Page 27 of 29 
 

OutShares  INTEGER, 
IssuedShares INTEGER, 
CONSTRAINT PKStock PRIMARY KEY (Symbol), 
CONSTRAINT FKStock FOREIGN KEY (Symbol) REFERENCES Security ON 
DELETE CASCADE ) 
 
CREATE TABLE Bond 
(Symbol CHAR(6) NOT NULL, 
Rate DECIMAL(12,4), 
FaceValue DECIMAL(10,2), 
CONSTRAINT PKBond PRIMARY KEY (Symbol), 
CONSTRAINT FKBond FOREIGN KEY (Symbol) REFERENCES Security ON 
DELETE CASCADE ) 
 
CREATE TABLE Common 
(Symbol CHAR(6) NOT NULL, 
PE/Ratio DECIMAL(12,4), 
Dividend DECIMAL(10,2), 
CONSTRAINT PKCommon PRIMARY KEY (Symbol), 
CONSTRAINT FKCommon FOREIGN KEY (Symbol) REFERENCES Stock ON 
DELETE CASCADE) 
 
CREATE TABLE Preferred 
(Symbol CHAR(6) NOT NULL, 
CalIPrice DECIMAL(12.2), 
Arrears DECIMAL(10,2), 
CONSTRAINT PKPreferred PRIMARY KEY (Symbol), 
CONSTRAINT FKPreferred FOREIGN KEY (Symbol) REFERENCES Stock ON 
DELETE CASCADE) 
Figure 40 Conversion of generalization hierarchy in Figure 39 
 
Because the Relational Model does not directly support generalization hierarchies, 
there are several other ways to convert generalization hierarchies. The other 
approaches vary depending on the number of tables and the placement of inherited 
columns. Rule 6 may result in extra joins to gather all data about an entity, but there 
are no null values and only small amounts of duplicate data. For example, to collect 
all data about a common stock, you should join the Common, Stock, and Security 
tables. Other conversion approaches may require fewer joins but result in more 
redundant data and null values. The references at the end of this chapter discuss the 
pros and cons of several approaches to convert generalization hierarchies. 
 
 
Converting 1-1 Relationships 
 
Outside of generalization hierarchies, 1-1 relationships are not common. They can 
occur when entities with separate identifiers are closely related. For example, Figure 
41 shows the Employee and Office entity types connected by a 1-1 relationship. 
Separate entity types seem intuitive but a 1-1 relationship connects the entity types. 
Rule 7 converts 1-1 relationships into two foreign keys unless many null values will 

Product Information Management / IEM3613 MIT/IVE(TY) 
Chapter 5 Database Development 
 

 Page 28 of 29 
 

result. In Figure 41, most employees will not manage offices. Thus, the conversion in 
Figure 42 eliminates the foreign key (OfficeNo) in the employee table. 
 
7. 1-1 Relationship Rule: The 1-1 relationship is converted into two foreign keys. If 

the relationship is optional with respect to one of the entity types, the 
corresponding foreign key may be dropped to eliminate null values. 

 
Figure 41 1-1 Relationship 

 
 
CREATE TABLE Employee 
(EmpNo  LONG  NOT NULL, 
EmpName   VARCHAR, 
CONSTRAINT PKEmployee PRIMARY KEY (EmpNo) ) 
 
CREATE TABLE Office 
(OfficeNo LONG NOT NULL, 
OffAddress VARCHAR, 
OffPhone CHAR(10), 
EmpNo LONG, 
CONSTRAINT PKOffice PRIMARY KEY (OfficeNo) , 
CONSTRAINT FKEmpNo FOREIGN KEY (EmpNo) REFERENCES Employee 
CONSTRAINT EmpNoUnique UNIQUE (EmpNo) ) 
Figure 42 Conversion of the 1-1 relationship in Figure 41 
 



Product Information Management / IEM3613 MIT/IVE(TY) 
Chapter 5 Database Development 
 

 Page 29 of 29 
 

APPENDIX 
 

Symbol Meaning 
  

 

 
M-N relationship with attributes: attributes are 
shown if room permits; otherwise attributes are 
listed separately. 
 
Entity type with attributes (primary key 
underlined). 

  

 

 
Identification dependency: identifying 
relationship(s) (solid relationship lines) and weak 
entity (Diagonal lines in the corners of the 
rectangle). Associative entity types also are weak 
because they are (by definition) identification 
dependent. 

  

 

 
 
Existence dependent cardinality (min. cardinality 
of 1): inner symbol is a solid line. 

  

 

 
Optional cardinality (min. cardinality of 0): inner 
symbol is a circle. 

  

 

 
Single-valued cardinality (max. cardinality of 1): 
outer symbol is a solid line. 

  

 

 
Generalization hierarchy with disjointness and 
completeness constraints. 

 


