
Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 6 Object-oriented Technology

 Page 1 of 28

6.1 Object-oriented (OO) approach

Modem corporations are faced with a profound dilemma. Increasingly, they are
becoming information-based organizations, dependent on a continuous flow of data
for virtually every aspect of their operations. Yet their ability to handle that data is
breaking down because the volume of information is expanding faster than the
capacity to process it. The result: corporations are drowning in their own data. The
problem doesn't lie in hardware - computers continue to increase in speed and
power at a phenomenal rate. The failure lies in software. Developing software to tap
the potential of computers turns out to be a far greater challenge than building faster
machines.

Corporations are drowning in data. The failure lies in software. Most
software is delivered late and over budget. We need better software
and we need it faster. This is known as the software crisis.

Clearly something is wrong here. It's not that we haven't tried to improve our
techniques for building software. Rather, it's taken us years to understand just how
hard it is to build good software. Developing robust, large-scale software systems
that can evolve to meet changing needs turns out to be one of the most demanding
challenges in modem technology.

Traditional Approach

Building Program
Single-procedure programs are usually written by a single programmer, who can
maintain a mental image of the entire procedure, move instructions from place to
place, and make design decisions freely as the program unfolds. Small groups of
programmers can work in a similar style so long as all the members have free and
open communication with each other. Larger programs can't be constructed as a
single procedure like this. As the size of a program grows, so does the number of
programmers required to build it. When a development group numbers in the tens or
hundreds, the amount of communication required among the programmers becomes
overwhelming. So many people are negotiating so many interacting decisions that no
one has time to do the actual programming!

Small programs can be built as a single procedure. This approach
doesn’t work for larger systems. Larger systems require modular
programming. Subroutines support modular programming, but
requires discipline.

Modular Programming
With this approach, large-scale programs will be broken down into smaller
components that can be constructed independently, then combine them to form the
complete system. The most elementary support for modular programming came with
the invention of the subroutine in the early 1950s. A subroutine is created by pulling

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 6 Object-oriented Technology

 Page 2 of 28

a sequence of instructions out of the main routine and giving it a separate name;
once defined, the subroutine can be executed simply by including its name in the
program wherever it is required. Subroutines provide a natural division of labor:
different programmers write the various subroutines, then assemble the completed
subroutines into a working program.

Subroutine called from two places

While subroutines provide the basic mechanism for modular programming, a lot of
discipline is necessary to create well-structured software. Without that discipline, it is
all too easy to write tortuously complicated programs that are resistant to change,
difficult to understand, and nearly impossible to maintain. And that's what happened
far too often during the early years of the industry.

Structured programming provides functional decomposition approach
that enforces discipline of building subroutines with the help of CASE
tools.

Structured Programming
In the late 1960s, the generally poor state of software sparked a concerted effort
among computer scientists to develop a more disciplined, consistent style of
programming. The result of that effort was the refinement of modular programming
into the approach known as structured programming. This approach relies on
functional decomposition, a top-down approach to program design in which a
program is systematically broken down into components, each of which is
decomposed into subcomponents, and so on, down to the level of individual
subroutines. Separate teams of programmers write the various components, which
are later assembled into the complete program.

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 6 Object-oriented Technology

 Page 3 of 28

Program with 2 levels of nesting

Structured programming has produced significant improvements in the quality of
software over the last twenty years, but its limitations are now painfully apparent.
One of the more serious problems is that it's rarely possible to anticipate the design
of a completed system before it's actually implemented.

Computer-Aided Software Engineering (CASE)

CASE building a program

The latest innovation in structured programming is computer-aided software
engineering (CASE). With CASE, computers manage the process of functional
decomposition, graphically defining subroutines in nested diagrams and verifying
that all interactions between subroutines follow a correctly specified form. Advanced
CASE systems can actually build complete, working programs from these diagrams
once all the design information has been entered. Proponents of CASE herald the

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 6 Object-oriented Technology

 Page 4 of 28

automatic generation of programs from designs as a major breakthrough in software
development. However, the process is not nearly as automatic as it first appears. In
fact, a CASE tool doesn't create software at all - it simply translates the design for a
system from graphical to textual form. Experience to date has shown that developing
a complete graphical design for a program can be just as demanding and time-
consuming as writing the program in the first place.

Managing Information
Most efforts to improve software development have focused on the modularization of
procedures. But there is another component to software which, while less obvious, is
no less important. That is the data, the collection of information operated on by the
procedures. As the techniques of modular programming have evolved over the
years, it has become apparent that data, too, must be modularized.

Subroutines can share small amounts of data, but sharing too much
data leads to problems. The solution lies in hiding information.

Data Within Programs
If a program requires only a few pieces of data to do its work, these pieces can
safely be made available to all the different subroutines that make up the program.
This arrangement is very convenient for programmers because the shared collection
of data provides a communal "blackboard" on which the various subroutines can
exchange information whenever they need to communicate.

Shared data with multiple subroutines

When the pieces of data number in the hundreds or thousands, however, this simple
solution usually leads to mysterious errors and unpredictable behavior. The problem
is that sharing data is a violation of modular programming, which requires that
modules be as independent as possible.

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 6 Object-oriented Technology

 Page 5 of 28

Local data within subroutines

Allowing modules to interact freely through shared data makes the actions of any
one module directly dependent on the behavior of all the others. The solution to this
problem is to modularize the data right along with the procedures. This is typically
done by giving each subroutine its own local store of data which it alone can read
and write. The strategy of information hiding minimize unwanted interactions
between subroutines and allows them to be designed and maintained more
independently.

Data Outside of Programs
Small programs often require only a few inputs and generate output that is meant to
be consumed immediately. A program to calculate amortization tables, for example,
might accept a base value and an amortization period from the keyboard, then print
out a page of calculations. Programs of this sort don't need to store any data
because they work with fresh information every time they are run. Larger programs,
however, usually work with the same information over and over again. Inventory
control programs, accounting systems, and engineering design tools couldn't
function if they didn't have a way of preserving information from one run to the next.
The simplest solution to the problem of keeping data around is to have a program
store its data in an external file. When you finish running the program, it sends the
data to the external file. When you start up the program again, it retrieves the data
from the file. The use of a file also allows the program to work with more information
than it could hold internally by reading and writing only a small portion of the file at
any one time. External data files provide an adequate solution for information
storage so long as data is accessed only by a single person using a single program.
When data has to be shared, new problems arise.

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 6 Object-oriented Technology

 Page 6 of 28

A program accessing a file

Some programs don’t need to preserve data, but most large programs
have to reuse data. Data can be preserved in files, but that doesn’t
work when data must be shared. Shared data requires a database
management system.

Sharing Data
When different people can access the same file, there's always the possibility of one
person changing information that others are currently using. Preventing this
confusion turns out to be a fairly difficult technical problem that is not easily solved
within a simple file system. Although some older programs still use files to store
shared information, most multi-user systems are now built on top of special
programs, called database management systems (DBMSs), that are designed to
manage simultaneous access to shared data.

Databases contain structure as well as data. The network model
extended the hierarchical model. Fixed data structures reduce
flexibility. Relational Model removes most of the structure, but costly.
OO is the new approach. Software objects combine procedures and
data.

Sharing data in a database

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 6 Object-oriented Technology

 Page 7 of 28

Database management programs do more than just control access to data stored in
files; they also store relationships among the various data elements. The earliest
form of database manager, known as the hierarchic model, represented data items
(called records) in tree structures. For example, a department could include records
for the positions it contained and the equipment checked out to it. Each position, in
turn, could be associated with a list of responsibilities and a list of employees in the
department holding that position.

Hierarchic database model

A more recent kind of database, the network model, allowed data to be
interconnected freely, with no requirement that it fit into a tree structure. In the
previous example, each piece of equipment could be associated with both a
department and a fist of employees who were authorized to use it. This kind of
association would not be permitted in the hierarchic model.

Network database model

The hierarchic and network database models made it easy to represent complex
relationships among data elements, but there was a cost: accessing the data by the
predefined relationship was slow and inefficient. Worse yet, the data structures were

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 6 Object-oriented Technology

 Page 8 of 28

hard to modify; changing these structures required system administrators to shut
down the database and rebuild it.

Relational database model

A newer form of database manager, the relational model, addresses these
problems by removing the information about complex relationships from the
database. All data is stored in simple tables, with basic relationships among data
items being expressed as references to values in other tables. For example, each
entry in the equipment table would contain a value indicating which department it
belonged to. Although the relational model is much more flexible than its
predecessors, it pays a price for this flexibility. The information about complex
relationships that was removed from the database must be expressed as procedures
in every program that accesses the database, a dear violation of the independence
required for modularity. There is also a performance penalty because the original
data structures must be reassembled every time the data is accessed.

The Object-oriented Approach
Despite all efforts to find better ways to build programs, the software crisis is growing
worse with each passing year. Forty years after the invention of the subroutine, we
are still building systems by hand, one instruction at a time. We’ve developed better
methods for this construction process, but these methods don't work well in large
systems. In addition, these methods usually produce defect-ridden software that's
hard to modify and maintain. We need a new approach to building software, one that
leaves behind the bricks and mortar of conventional programming and offers a truly
better way to construct systems. This new approach must be able to handle large
systems as well as small, and it must create reliable systems that are flexible,
maintainable, and capable of evolving to meet changing needs. Object-oriented
technology can meet these challenges and more. The remainder of this guide
explains how this technology works and illustrates its potential to succeed where
other methods have failed.

Objects make excellent software modules. It can interact in flexible
way. These interactions are expressed as messages.

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 6 Object-oriented Technology

 Page 9 of 28

6.2 Introducing Object

This section introduces the three keys to understanding object-oriented technology -
objects, messages, and classes. In fact, it's possible to apply OO approach with
using no more than ten basic terms: object, method, message, class, subclass,
instance, inheritance, encapsulation, abs-traction, and polymorphism.

Although object-oriented technology has become popular recently, it's actually more
than twenty years old. Virtually all the basic concepts of the object-oriented approach
were introduced in the Simula programming language developed in Norway during
the late 1960s.

An object

Inside Objects
The concept of software objects arose out of the need to model real-world objects in
computer simulations. An object is software "package" that contains collection of
related procedures and data. In the object-oriented approach, procedures go by a
special name; they are called methods. In keeping with traditional programming
terminology, the data elements are referred to as variables because their values can
vary over time. For example, consider how you might represent an automated
guided vehicle (AGV) in the simulation of a factory. The vehicle can exhibit a variety
of behaviors, such as moving from one location to another or loading and unloading
its contents. It must also maintain information about both its inherent characteristics
(pallet size, lifting capacity, maximum speed, and so on) and its current state
(contents, location, orientation, and velocity). To represent the vehicle as an object,
you would describe its behaviors as methods and its characteristics as variables.
During the simulation, the object would cant' out its various methods, changing its
variables as needed to reflect the effects of its actions.

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 6 Object-oriented Technology

 Page 10 of 28

An automated vehicle object

The concept of an object is simple yet powerful. Objects make ideal software
modules because they can be defined and maintained independently of one another,
with each object forming a neat, self-contained universe. Everything an object
"knows" is expressed in its variables. Everything it can do is expressed in its
methods.

Introducing Messages
Real-world objects can exhibit an infinite variety of effects on each other creating,
destroying, lifting, attaching, buying, bending, sending, and so on. This tremendous
variety raises an interesting problem - how can all these different kinds of
interactions be represented in software?

Message support all possible interactions. There may be many
objects of any given type.

The way objects interact with each other is to send each other messages asking
them to carry out their methods. A message is simply the name of an object followed
by the name of a method the object knows how to execute. If a method requires any
additional information in order to know precisely what to do, the message includes
that information as a collection of data elements called parameters. The object that
initiates a message is called the sender and the object that receives the message is
called the receiver.

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 6 Object-oriented Technology

 Page 11 of 28

Message to vehicle104

To make an automated vehicle move to a new location, for example, some other
object might send it the message:

Vehicle104 moveTo binB7

In this example, vehicle104 is the name of the receiver, moveTo is the method it is
being asked to execute, and binB7 is a parameter telling the receiver where to go.

An automated vehicle object

An object-oriented simulation, then, consists of some number of objects interacting
with each other by sending messages to one another. Since everything an object
can do is expressed by its methods, this simple mechanism supports all possible
interactions between objects.

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 6 Object-oriented Technology

 Page 12 of 28

A class and its instances

Introducing Classes
Sometimes a simulation involves only a single example of a particular kind of object.
It is much more common, however, to need more than one object of each kind. An
automated factory, for example, might have any number of guided vehicles. This
possibility raises another concern: it would be extremely inefficient to redefine the
same methods in every single occurrence of that object.

Classes defined groups of similar objects. Objects are instances of
classes.

Creating Templates with Classes
A class is a template that defines the methods and variables to be included in a
particular type of object. The descriptions of the methods and variables that support
them are included only once, in the definition of the class. The objects that belong to
a class, called instances of the class, contain only their particular values for the
variables.

To continue the previous example, a simulated factory might contain many
automated vehicles, each of which carried out the same actions and maintained the
same kinds of information. The entire collection of vehicles could be represented by
a class called AutomatedUehicle, and that class would contain the definitions of its
methods and variables. The actual vehicles would be represented by instances of
this class, each with its own unique name (vehicle101, vehicle102, vehide103...).
Each instance would contain data values represented its own particular contents and
location. When a vehicle received a message to carry out a method, it would turn to
the class for the definition of that method and then apply the method to its own local
data values.

An object, then, is an instance of a particular class. Its methods and variables are
defined in the class, and its values are defined in the instance. To keep my
explanations simple, I usually talk about objects wherever possible, referring to
classes and instances only when it's important to point out where the object's
information is actually stored. For example, if I say that the object vehicle104 has a

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 6 Object-oriented Technology

 Page 13 of 28

method called moveTo, this is simply a more convenient way of saying that
vehicle104 is an instance of a class that defines a method called moveTo.

Classes can be defined in terms of each other. Inheritance is the
mechanism that allow this. Complete hierarchies of classes can be
built up.

Inheriting Class Information
Inheritance is a mechanism whereby one class of objects can be defined as a
special case of a more general class, automatically including the method and
variable definitions of the general class. Special cases of a class are known as
subclasses of that class; the more general class, in turn, is known as the
superclass of its special cases. In addition to the methods and variables they
inherit, subclasses may define their own methods and variables and may override
any of the inherited characteristics. For example, the class AutomatedVehicle could
be broken down into two subclasses, PalletAGV and RoIIAGV each of which
inherited the general characteristics of the parent class. Either subclass could
establish its own special characteristics by adding to the parent's definition or by
overriding its behavior.

Subclasses of a superclass

Hierarchies of Classes
Classes can be nested to any degree, and inheritance will automatically accumulate
down through all the levels. The resulting treelike structure is known as a class
hierarchy. A class called Part, for example, could be broken down into special kinds
of parts such as Motor, Chassis Connector, and so on. Motor, in turn, could be
divided into DriveMotor and SteppingMotor, each of which could be broken down
further as needed. An instance of, say, VariableSpeedDriveMotor would inherit all
the characteristics of the Part class, as well as those of Motor and DriveMotor.

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 6 Object-oriented Technology

 Page 14 of 28

Two subclasses of automated vehicle

A class hierarchy for parts

he invention of the class hierarchy is the true genius of object-oriented technology.
Human knowledge is structured in just this manner, relying on generic concepts and
their refinement into increasingly specialized cases. Object-oriented technology uses
the same conceptual mechanisms we employ in everyday life to build complex yet
understandable software systems.

Class hierarchies reflect human understanding. There are now many
object-oriented languages, which reflect very different strategies.

Programming with Objects

Objects, messages, and classes are the central mechanisms of object-oriented
technology. Traditionally, software has been viewed as a way to make a computer
perform a particular task. This view is reflected in the overall progression of software

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 6 Object-oriented Technology

 Page 15 of 28

development projects: they begin with a specification of the problem to be solved,
followed by a design for a system that produces the required behavior, and so on.
There is a different mindset underlying object-oriented technology. Although the
technology has spread far beyond its origins as a simulation language, programming
with objects still retains the spirit of real-world simulation. The design of an object-
oriented system begins not with the task to be performed, but rather with the aspects
of the real world that need to be modeled in order to perform that task. Once these
are correctly represented, the model can be used to solve a wide variety of tasks,
including the original one. If you have a good model of your customers and your
interactions with them, you can use this model equally well for billings, mailings, and
ticklers.

Object-oriented software models a system. Using models has many
advantages. Conventional software us usually built from scratch.

The object-oriented approach to building software systems has many other
advantages besides flexibility. Because the structure of the software reflects the real
world, programmers can more easily understand and modify it in the future even if
they aren't the same people who built the software in the first place. More
importantly, the basic operations of a company tend to change much more slowly
than the information needs of specific groups or individuals. This means that
software based on corporate models will have a much longer life span than
programs written to solve specific, immediate problems.

Object-oriented systems are built by assembly. The approach has
many important advantages. All are essential for modern system
development.

Programming as Object Assembly
The process by which software is constructed is very different in the object-oriented
approach. Most conventional software is still written from scratch, with very little
reuse of procedures from earlier programs. Because these programs are written to
solve very specific problems, it's usually easier to write new procedures than to
convert existing ones.

Objects, by contrast, are general-purpose building blocks that model real-world
entities rather than performing specific tasks. This makes them easy to reuse in
subsequent projects, even if the objectives of the new projects are quite different. As
more and more classes are accumulated, the software development effort begins to
shift from creating new classes of objects to assembling existing ones in new ways.
A mature object-oriented development team may devote as little as twenty percent of
its time to creating new classes. The majority of its time is spent assembling proven
components into new systems.

The Promise of the Approach
There is much more to the object-oriented approach than I have covered in this brief
introduction, but some of the promise of this new way of thinking should now be
apparent. Object-oriented technology offers some powerful techniques for creating
flexible, natural software modules. Moreover, the focus on building general-purpose

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 6 Object-oriented Technology

 Page 16 of 28

models produces systems that are much easier to adapt to new demands. Finally,
the extensive reuse of existing, proven components not only shortens development
time, it also leads to more robust, error-free systems. Each of these benefits will play
a crucial role in resolving the software crisis we now face.

Placing data with behavior is called encapsulation that promotes
information hiding.

6.3 UML

The Unified Modeling Language (UML) has been designed to help the participants in
software development efforts build models will enable the team to visualize the
system, specify the structure and behavior of that system, construct the system, and
document the decisions made along the way.

Visualization
Models help a software development project team visualize the system they need to
build that will satisfy the various requirements imposed by the project’s stakeholders.
The UML is specifically designed facilitate communication among the participants in
a project. By offering a set of well defined diagrams, and precise notation to use on
those diagrams, the UML gives everyone on the team the ability to understand
what’s going on with the system at any point in time with minimal risk of
misinterpretation.

Specification
To specify a model, in UML terms, means to build it so that it’s precise,
unambiguous, and complete. Various aspects of the UML address the specification
of the many decisions that have to be made as a system evolves.

Construction
The ultimate goal of a development project is working code.

Documentation
The combination of UML models and the other kinds of work products that come out
of a development effort generally forms a solid set of project documentation.

Where did the UML come from?
The initial seed of Unified Method came in 1994, when Rumbaugh left General
Electric to join Booch at Rational. The company made the first version of the method
public a year later. There followed the 0.9 Unified Method documentation, and then
version 1.0 of the Unified Method documentation, and then version 1.0 of the Unified
Modeling Language. Version 1.0 was what rational submitted to the Object
Management Group (OMG), the body that serves to define standards across many
areas of computer science. UML 1.1 became the standard object-oriented modeling
language in November of 1997.

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 6 Object-oriented Technology

 Page 17 of 28

Views of a System
In a software development project, each of the various stakeholders comes to the
table with a different agenda. In turn, each stakeholder looks at the system from a
different angle. The UML captures these angles as a set of five interlocking views.
Each view reveals a particular set of aspects of the system from a given perspective.
Fig. 1 shows the five views of a system’s architecture that the UML defines.

• Use case

view
• Implementation

view
• Design view • Deployment view
• Process view

UML and Process

The Five workflows
There are five workflows within the unified process.

Requirements
The primary activities of the requirement workflow are aimed at building the use case
model, which captures the functional requirements of the system being modeled.
The use case model also serves as the foundation for all other development work.
Diagram below shows how the use case model influences the other five UML
models.

Use case
Model

Deployment
Model

Design
Model

Analysis
Model

Implementation
Model

Test
Model

The six basic Unified Process Models

Analysis
The primary activities of the Analysis workflow are aimed at building the analysis
model, which helps the developers refine and structure the functional requirements
captured within the use case model.

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 6 Object-oriented Technology

 Page 18 of 28

Design
The primary activities of the Design workflow are aimed at building the design model,
which describes the physical realizations of the use cases, from the use case model,
and also the contents of the analysis model. The design workflow also focuses on
the deployment model, which defines the physical organization of the system in
terms of computational nodes.

Implementation
The primary activities of the Implementation workflow are aimed at building the
implementation model, which describes how the elements of the design model are
packaged into software components, such as source code file, dynamic link libraries
(DLLs), and Enterprise Java Beans (EJBs).

Test
The primary activities of the Test workflow are aimed at building the test model,
which describes how integration and system tests will exercise executable
components from the implementation model. The test model describes how the team
will perform those tests as well as unit tests.

Iterations and Increments
Each of the Unified Process’s phases is divided into iterations. An iteration is simply
a mini-project that’s part of a workflow. Each iteration results in an increment. This is
a release of the system that contains added and/or improved functionality over and
above the previous release.

6.4 Basic Modeling Concepts

Objects
An object is simply a real-world thing or concept. There are three essential aspects
of objects.
An object has identity – generally take the form of a human-readable name.
An object has state – names of the various properties that describe the object (its
attributes).
An object has behavior – this is represented by functions, referred to as methods.

One of the fundamental principles of object-orientation (OO) is that of data hiding: an
object hides its data from the rest of the world and only lets outsiders manipulate that
data by way of calls to the object’s methods. The formal term for this is
encapsulation.

Object Attribute Value
Octopus card PIN 2354
Account ID 232-2222-3456-1000
$200 Bill serialNumber J2345

Objects, Attributes, and Values

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 6 Object-oriented Technology

 Page 19 of 28

Classes
A class is a collection of objects that have the same characteristics. A class has
identity in the form of a human-readable name that’s unique in a particular context.

A class doesn’t have state like an object does. It defines behavior in terms of
operations, as opposed to methods. An operation represents a service that an object
can request to affect behavior; a method is an implementation of that service.

An object that belongs to a particular class is often referred to as an instance of that
class. Within the UML, the standard notation for a class is a box with three
compartments, as shown in Fig. 2. The top compartment contains the name of the
class, the middle compartment contains the attributes that belong to the class, and
the bottom compartment contains the class’s operations.

Class

attributes

operations

UML Class Notation

 Account

email address
ID

verifyPassword()

title:String

Book

Sample Classes

Class Relationships
The relationships among classes provide the foundation for the structure of a new
system. The followings explore how you use the UML to illustrate three kinds of class
relationships.

Association
An association is a structural connection between classes. You show an
association between two classes with a straight line that connects them.

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 6 Object-oriented Technology

 Page 20 of 28

 Class

attributes

Class

attributes

Class Class

 Book

title:String

Review

assignRating()
avgRating()

Shipper Shipping Info

Publisher

name

 UML Association Notations and Sample Association

Reviewer Review

writes

is written by
Association Roles

Aggregation
An aggregation is a special kind of association – a “whole/part” relationship within
one or more smaller classes are “part” of a larger “whole”. Using the UML, you show
an aggregation by using a line within an open diamond at one end.

Shipping Info Billing Info

1

1

Order

Book

title: String

*

1

1

1

Sample Aggregation

Generalization
Generalization refers to a relationship between a general class (the super-class or
parent) and a more specific version of that class (the subclass or child). A subclass
inherits the attributes and operations from one super-class (single inheritance) or
more than one super-class (multiple inheritance).

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 6 Object-oriented Technology

 Page 21 of 28

Customer Review Editorial Review

Review
Parent Class

Child Class

attributes

operations

Sample Generalization

Substitutability – an object of a subclass may be substituted anywhere an object
of an associated super-class is used.

Polymorphism – an object of a subclass can redefine any of the operations in
inherits from its super-class(es).

Association Classes
An association class is a cross between an association and a class. You use it to
model an association that has interesting characteristics of its own outside the
classes it connects.

Book

title: String

BookAndAuthor

role

Author

Association Class

Class Diagrams
A class diagram shows classes and the various relationship in which they are
involved.

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 6 Object-oriented Technology

 Page 22 of 28

Book

title: String

BookAndAuthor

role

Author

Customer Review Editorial Review

Review

Shipping Info

Order Billing Info

Account

email address
ID

verifyPassword()

Customer

1
*

1 1

Class Diagram

Object Diagrams
The UML notation for an object takes the same basic form as that for a class. There
are three differences: Within the top compartment of the class box, the name of the
class to which the object belongs appears after a colon. The object may have a
name, which appears before the colon, or it may be anonymous, i.e. nothing appears
before the colon.

The contents of the top compartment are underlined for an object. Each attribute
defined for the given class has a specific value for each object that belongs to that
class. Diagram indicated below shows the UML notation for both a named object
and an anonymous object.

 AW: Publisher

 : Class

: BookAndAuthor

Role =”support”

Object: Class

attribute= value attribute1= value1
attribute2= value2

: Author

name = “Kent”

: Book

title = “UML”

name = “ABC”

Object Notation

Sample Object Notation

An object diagram is basically a snapshot of part of the structure of the system
being modeled. It has the same basic appearance as a class diagram, except that it
shows objects, and actual values for attributes, instead of classes.

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 6 Object-oriented Technology

 Page 23 of 28

Packages
A package is a grouping of pieces of a model. Packages are very useful in
managing models. They are helpful in grouping related items in order to make it
easier to break work up among subteams.

A package can contain one or more kinds of model elements. You can have just
classes in a package, for instance, or classes and class diagrams, or a number of
different kinds of constructs and diagrams.

Review Book

customer
account

Customer

Sample Packages

Capturing Requirements
The task of capturing requirements associated with a new system is a complicated
one, an one that never seems to stop. The use case model, which allows the project
stakeholders to agree on what the system should do, serves as the foundation for all
other development work. The elements of this model are shown as follows.

Actors and Use Cases
An actor represents one of two things:

• A role that can play with regard to a system
• An entity, such as another system or a database, that resides outside the

system

A use case is a sequence of actions that an actor performs within a system to
achieve a particular goal. A good use case is expressed from the viewpoint of the
actor, in present tense and active voice.

Customer Account
Sample Actors

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 6 Object-oriented Technology

 Page 24 of 28

Use Case Diagram
You show actors and use cases on use case diagrams.

The actor that executes a given use case usually appears on the left-hand side of
the diagram.
The use case appear in the center.
Any other actors that are involved in the given use case tend to appear on the right-
hand side.
Arrows show which actors are involved in which use cases.
Diagram below shows how actors and use case appear on a UML use case diagram.

Customer

Create account

Log in

Add to shopping cart

Write customer review

Check out

Use case diagram

Flows of Events
Two kinds of events are associated with use cases.
ü The main flow of events (basic course of action) is the main start-to-finish path that

the actor and the system will follow under normal circumstances.
ü The exceptional flow of events (alternate course of action) is a path through a use

case that represents an error condition or a path that the actor and the system
take less frequently.

User

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 6 Object-oriented Technology

 Page 25 of 28

6.5 How Things Work Together

Robustness Analysis
Robustness Analysis involves analyzing the text of a use case and identifying a first-
guess set of objects that will participate in the use case, and then classifying these
objects based on their characteristics.

There are three types of analysis classes: boundary classes, entity class and control
class. The following subsections describe these classes in term of the objects that
serve as instances of the classes.

Boundary Objects
A boundary object is an object with which an actor associated with a use case
interacts.

Entity Objects
An entity object is generally an object that contains long-lived information, such as
that associated with databases. An entity object can also contain transient data, such
as the contents of lists in windows, or search results. Entity objects also correspond
with nouns in use case text.

Control Objects
A control object is an object that embodies application logic. Control objects are
often used to handle things such as coordination and sequencing. They are also
useful for calculations involving multiple entity objects.

Control objects serve as the connecting tissue between boundary objects and entity
objects. They correspond with verbs in use case text.

B oundary Object Entity Object Control Object

Objects

Messages and Actions
The next step in modeling the dynamic behavior of a system involves modeling the
interactions among objects. These interactions take the form of set messages. A
message is a communication between two objects, or within an object, is designed to
result in some activity.

Call and Return
A call action is an invocation of a method on an object. A call action is synchronous,
which means that the sender assumes that the receiver is ready to accept the
message. An object can perform a call action on another object, or an object can
perform a call action on itself. The UML represents a call action as an arrow from the
calling object to the receiving object. The dashed line that appears beneath each
object in the diagram is called a lifeline. A return action is the return of a value in

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 6 Object-oriented Technology

 Page 26 of 28

response to a call action. You show a return action as a dashed arrow from the
object returning the value to the object receiving the value.

 : Shipper : Order

lookUpZone

CalculateShippingCost()

Shipping Cost

Call and return actions

Create and Destroy
A create action creates an object. (It tells a class to create an instance of itself.)
Diagram indicated shows the UML notation for a create action.

The guillemets around “create” and “destroy” indicate that these words fall into the
same basic category of UML keywords as “include” and “extend”. A destroy action
destroys an object.

: Account

Object : Class

 <<create>>

: Class

Object : Class

 <<destroy>>

Create Action and Destroy Action

Send
A send action sends a signal to an object. A signal is an asynchronous
communication between objects: one object “throws” a signal to another object that
“catches” the signal, but the sender of the signal doesn’t expect a response from the
receiver unlike the sender of a call action.

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 6 Object-oriented Technology

 Page 27 of 28

 : Exception
Handling : Login Page

BadPassword(userID)

Send Action

Sequence Diagrams
The UML sequence diagram is a diagram that focuses on the time ordering of the
messages that go back and forth between objects. Sequence diagrams are also
associated with the Design workflow Unified Process. The development team uses
sequence diagrams in deciding where to assign operations on classes. Sequence
diagram notation.

ü Objects appear along the top margin.
ü Each object has a lifeline, a dash line represents the life.
ü A focus of control is a tall, thin rectangle that sits on top of an object’s lifeline.

The rectangle shows the period of time during which an object is in control of the
flow.

ü Messages show the actions that objects perform on each other and on
themselves.

:Customer : Home Page

clickLogin()
The customer clicks

the login button

Log in Sequence diagram, part 1

Product Information Management / IEM3613 MIT/IVE(TY)
Chapter 6 Object-oriented Technology

 Page 28 of 28

Collaboration Diagrams

The UML collaboration diagram is a diagram that focuses on the organization of the
objects that participate in a given set of messages.

:Customer
 : Home Page

Login Page

3:enterID and
password

4:clickOK()

Account

1:clickLogin()

2:display() 6:display()

5:validateLogin()

Collaboration diagram

