1 EDUC-250 Mathematical Analysis I

1.1 Exercise I

1. (Convergence). Given a sequence (z),>1 of real numbers, prove that

the followings are equivalent:

(a) a is the limit of the sequence (zy)n>1

(b) (¢ — N definition). For any given £ > 0 there exists a natural

number N such that |z, — a|] < e for all n > N.

(c) (Open Neighborhood definition). For any € > 0, there are
only finitely many terms in the sequence ( x, ) lying outside the

neighborhood (a — €, a + ¢€) of the limit a.

(d) (Subsequence form). Every subsequence (zp,)ken of (x,) con-

verges to a.

Proof. (a) < (b). (b) is the definition of the concept of (a).

(b) © (¢). As|zp —a| <e<<= —ec<a,—a<e<=a—¢c<a,<
a+e<=z, € (a—c,a+e).

If (b) holds, then for any given & > 0, then

{N,N+1,N+2,---} C {k|zr€(a—e,a+¢e) }. Hence we have,
{k|zr ¢ (a—e,a+e) } CN\{N,N+1,N+2,---} ={1,2,--- ,N—1}.
In particular, (c) holds.

Suppose that (c) holds, then for any given ¢ > 0 the following index
set { k| zx ¢ (a —e,a+¢) } is finite, so it is bounded, and hence the
maximal element N exists. Then for any natural number n > N + 1, we
have x,, ¢ (a —¢e,a+¢) does not hold, this means that =, € (a —¢,a+¢)
for all n > N + 1. So (b) holds.

(b) < (d). Suppose (d) holds, then the original sequence is its own
subsequence, then it follows from (d) that it is a convergent sequence
with limit a, and hence (b) holds.

Suppose (b) holds, let (x,, ) be a subsequence of (x,,) then we have n; > k
for all £ € N. It remains to show that any subsequence (2, )ren of (25)
converges to the limit a. Since (b) holds, for any given € > 0, there exists
N € N such that for any natural number n > N, we have |z, — a|] < e.
It follows from ny > k that |z, —a| < ¢ for all & > N. So we have

lim z,, = a.
k—o0

. (Divergence). Let (z,) be a sequence. Prove that the followings are

equivalent:

(a) The sequence (z,,) does not converge to x € R.

(b) There exists an gy > 0 such that for any k € N, there exists ny € N
such that ny > k and |z,, — x| > o > 0.

(c) There exists an g9 > 0 and a subsequence (zy, ) such that |z —x,, | >

gg for all k£ € N.

(d) There exists a subsequence (xy, ) of (xy) which does not converges

to x.

Proof. (a) < (b): It follows from the definition that (z,) converges to
the limit x

< Ve>0(INeN(Yn>N[|z,—z|<e])).
So we have (x,,) does not converge to the limit z
<— [Ve>0(INeN(Yn>N ||z, —z|<e
< JF>0-[3INeN(Vn>N ||z, —2| <e]

1))]

)
<< Fe>0[VNeN(Vn>N]|z,—2z|<e])

)

].

)

]

]
< Je>0[VNeN(In>N ||z, —z|<e])]
< F>0[VNeN(In>N||lz,—z|>c])
Rewrite the last statement again as follows, there exists €9 > 0 such that
for all k € N there exist n; € N with ny > k such that |z,, — x| > €o.

(b) < (c): (c) is just a restatement of (b), given that a subsequence (zy, )

of (z,) must satisfy ng <ng <--- <np < ngy1 < ---.



. Suppose that a # 0 and b € R, S C R. Define a map f : R — R by
f(z) = az +b. Prove that ( f[S] )* = f[ S*].

. Let a, b, c be elements of an ordered field F. Suppose that b > a and ¢ > d.
Determine which of the following holds?

(a) ad + bc > ac + bd.
(b) ad + bc > ab+ cd.
(c) ac > bd.
(d
(e
(f) If a® + b2 > 0 then (a + b)% > 0.

) a? 4+ b? +c? +d? > ab + be + cd + ad.
)

add + b3 > b3e + ad®.

)
(g) If (@ +b)? > 0 then a® 4+ b* > 0.

. Let A and B be non-empty subsets of R. Determine which of the following
holds?
(a) If A is bounded and B C A, then B is bounded.
(b) If A is bounded and A C B, then B is bounded.
(c) If A and B are bounded, then AN B, AUB, B\ A and AAB =
(AU B)\ (AN B) are all bounded.

Repeat the same questions, if we replace '’bounded’ by ’bounded above’

and ’bounded below’ respectively.

. Let A and B be non-empty subsets of R. Suppose that a < bfor alla € A
and b € B. Determine which of the following holds?

(a) ANB#0.

(b) A is bounded above (bounded below).

(¢) B is bounded above (bounded below).

(d) supA<bforalbe B. (e)a<infB forallacA.

(f) sup A <inf B. (g) inf A < sup B.

7. Let A and B be non-empty subsets of R. Suppose that a < bforalla € A
and b € B.

(a) Prove that if AN B # (), then sup B = inf B.
(b) Give subsets A and B such that AN B = () and sup A < inf B.
(¢) Give subsets A and B such that AN B = () and sup A = inf B.

8. (a) Let a,b,c be elements of an ordered field such that a > b and ¢ > d.
Prove that a + ¢ > b+ d.

(b) Let a,b,c be elements of an ordered field such that a > b > 0 and
c¢ > d > 0. Prove that ac > bd.

9. (a) Let a be a non-zero element of an ordered field K. Prove that a® > 0.

(b) Let n be a non-zero natural number and K be an ordered field with
unity element 1g, i.e. multiplicative identity in K. Prove that

n-lg =1+ 1g+---+ 1g).

n times of 1x

10. Let A, B, C be three non-empty subsets of R.

(a) Suppose that A is bounded and B C A. Prove that B is bounded
and sup B < sup A.

(b) Suppose that AN C is non-empty and that A and C are bounded.
Prove that AN C' is bounded and that
sup( inf A,inf C' ) <inf( AN C) <sup(ANC) < inf(sup A,sup C).

(c) Suppose that a < b for all @ € A and b € B. Prove that sup A <
inf B. Give an example that the equality does not hold.

(d) Suppose that A and B are bounded and define A+ B = { a +
beR|a€ A be B }. Prove that A+ B is bounded and that
inf(A + B) = inf A + inf B and sup(A + B) = sup A + sup B.



2 Exercise I1

1. (a) Let I,, = [0,
Determine ()

1] for all n € N. Prove that if 2 > 0, then = & ),y In

nEN

(b) Let J, = (0,2) for all n € N. Prove that (o Jn = 0.

Recall that z € [a,b] <= a <z <b.

Solution

(a) If 2 > 0 then by Archimedean Order Property there exists n € N such
that 0 < 2 < z. Then z ¢ [0, 1] = I,,. Hence = & ;e In
If £ < 0 then x ¢ I, for all n € N. In particular, = ¢
Obviously, 0 € I, for all n € N, so that 0 €

10} = Npen In

2. Suppose that a,b,c,d € F.

nEN

nen In- In this case,

(a) If (a,b) N (¢,d) # 0, prove that ¢ < b and a < d.

(b) Suppose that a,b satisfies the following condition:
If € F such that x > a, then z > b.
Prove that b < a.

(c) Let ¢ < d, and a < b. If (a,b) C (¢, d), and prove that ¢ < a < b <d.
Proof.

(a) Since (a,b) N (¢,d) # 0, there exists z € (a,b) N (¢,d). It follows from
definition that a < z <band c<x <d. Thenc<z <band a < x < d.

(b) Suppose contrary that b > a. Set y = HTG, then y = I’JFT“ > afe — g If
b

follows from y > a that y > b, but the latter result violates b = b% >
=y

(c) Suppose contrary, then if follows from a < b then that ¢ > a or b > d.
If ¢ > a, then choose x = a + 5%, we have x = CJ“T“ > “J“T“ = a, and

(iii)

:U:H'T"<%:c<b,soa<x<c.Nowcomparethevaluesxandb

as follows.

(i) If x < bthen a < x < bhence z € (a,b). It follows from (a,b) C (c,d)
that x € (¢,d). In particular, ¢ < x, which violates z < c.
(ii) If x > b, then a < b < z < c. It follows that (a,b) N (¢, d) = (), which

violates the assumption (a,b) C (¢, d).
We leave the remaining case b > d to the reader as an exercise.

(i) Prove that if A C B and B is bounded, then A is bounded.
(ii) Prove that AU B and AN B are bounded; and

(iii) Prove that sup(A U B) = sup{sup A,sup B}, and inf(A U B) =
inf{inf A, inf B}.

Proof.

Since B is bounded, there exist M > 0 such that |z| < M for all z € B. So
it follows from A C B that if x € A = x € B = |z| < M. In particular,
A is bounded.

Let M = sup{sup A, sup B}. Then sup A < M and sup B < M.

r€AUB <= (z€ A)V(reB)= (x <supA)V (r <supB) = (z <
M)V (x < M) <= 2z < M. So AU B is bounded above. Similarly, one
can prove that x € AU B = z > inf{inf A, inf B}, and hence AU B is
bounded below. Finally, AN B is a subset of a bounded set AU B, so if
follows from (i) that AN B is bounded too.

We only prove that sup(A U B) = sup{sup A, sup B}. It follows from the
proof of (ii) that sup{sup A, sup B} is an upper bound of AU B. For any
e > 0, consider the following two cases: (1) If sup(A U B) = sup A then
there exists © € A such that x > sup A — ¢, in particular, x € AU B such

that > sup A —¢, hence sup(AUB) = sup A = sup{sup 4, sup B}. (2) If



sup(A U B) = sup B then there exists y € B such that y > sup B — ¢,
in particular, y € AU B such that y > sup B — ¢, hence sup(A U B) =
sup B = sup{sup A, sup B}.

The remaining case for infimum is left as an exercise.

. Determine the supremum and infimum of the following sets:
1 1
A={3(1-1)+2-1)" | nen}, B={ = ‘ nom €N } and
C = { mn ‘ n,meEN }
nm+ 1
Proof.

.LetE:{l— 3

m‘”EN}andO:{f)_i

2n

n € N }
T

supE = 1 and supO = 5. Thus inf F = —2 and infO = % We have

A = EUO. In this case, sup A = max{ sup E,supO } = 5. Similarly

inf A = min{ inf £,inf O } = —2.

1 1 1
.SinceB:{——l——‘n,mEN}:P—l—P,WhereP:{—‘nEN}
n o m n

with sup P = 1 and inf P = 0. It follows that sup B = sup(P + P) =
sup P+sup P = 141 = 2. Similarly, inf B = inf(P+ P) = inf P+inf P =
0+0=0.

Since <1 — 27%) and (5 + %) are monotone increasing sequence. Thus

1
. Since mn < mo_Z < 1, for all n,m € N. Then 1 is an upper
nm+ 1 nm n

bound of C. For any € > 0 then é — 1 e R, it follows from Archimedean

1
Order Property that there exists mg € N such that mg > — — 1. And
€

1 mo
-——l<— —F—>1—¢c.Th C=1.
mo>€ mo(1)+1> € us sup
Since 0 < m so 0 is a lower bound of C. For any € > 0 there exists
nm+ 1 ) ) .
ng € N such that — < ¢, it follows that ———— < — < 0+ e. So
no nop(1) +1 ng

inf C' = 0.

. If (z,) is a monotone increasing sequence with limit a, prove that

sup{ z, € R | n € N} = a.

Hint: prove that a is an upper bound of the set { z, € R | n € N}.
Proof. (i) We first show that a is an upper bound of (z,),en. Suppose
contrary that a is not an upper bound of (z,), then there exists N € N
such that xny > a. In particular, for all n > N we have z,, > zny > a.
In particular, |z, — a| = z, — a. Let ¢ = xy — a > 0, it follows from the
ILm z, = a that there exists M € N such that for all n > M we have
rxnoo— a| < e. Choose m = 1 + max{N, M} then m > M and m > N so
T — a = |Ty — a| < e = xy — a. In particular, z,, < ) where m > M.
This violates the increasing property of (x,).

(i) We now show that s is the least upper bound of the set { z, €
R | n € N}. For any € > 0, it follows from that there exists N € N

such that a — 2y = |zy — a|] < e. So we have zy > a — ¢, and hence

sup{ z, € R | n € N} = a.

If S be a non-empty bounded subset of a complete ordered field F, and
a € S. If a is an upper bound of S, prove that a = sup S.

Proof. It follows from the Supremum Principle that sup S exists in F.
Suppose that a # S, ie. a is not the least upper bound of S. In particular,
sup S < a. Since sup S is an upper bound of S we have a < sup S, which

contradicts sup S < a. So the result follows.

Determine the supremum and infimum of the set

S:{T;L:::;Q nEN,n;&O}.

n+1
Solution. Let f(n) = ———, then
n* + 32
n+1 n+2 —(n%+3n —31)

) = fn+1) n24+32 (n+1)2+32 (324 n2)(32+ (n+1)?)
Note that the denominator (32 + n2)(32 + (n + 1)2) is positive.

If 1 < n < 4, the numerator n? +3n — 31 < 0, and hence f(n+1) > f(n)
and so f(5) > f(4) > f(3) > f(2) > f(1).



(b)

()

10.

11.

12.

13.

If n > 5, then the numerator n? +3n —31 > 0, and hence f(n) > f(n+1)
and so f(5) > f(6) > f(7) > --- . Thus sup S = f(5) = 2/19.

It follows from n > 1 that n+1 > 1 > 0, and n? + 32 > 32 > 0, so
1 1 2 2
f(n) > 0 and that f(n) = 32—i—n < :2” < nZ = . we see that 0 is

the lower bound of S, and by means of Archimedean Ordermg property,
for any € > 0 there exists n € N such that 0 < 5 <
have f(n) < 2 <e=0+e¢. SoinfS = 0.

5. In particular, we

Determine the supremum and infinmum of the following subsets of R:
: 1 (- )
(1){12n|n€N,n7é0}, (){ },and
(iii) { Y |neN }

Let x be a strictly positive real number. Prove that there exists a strictly

positive integer n such that — < x < n.
n

1
Solution. For any = > 0, then 0 < 1/z. Let M = max{ =, — }, choose
T

1
n € N such that M < n. In particular, — < M <n and x < M < n. So
T

1 1
— < x.Then — <z <n.
n n

Prove that the following numbers are irrational: \/3, \3&, V2 + /3. Is

the sum of two irrational numbers still irrational?

Show that the set of irrational numbers is dense in R, i.e. for any real

numbers a < b, there exists an irrational number x such that a < x < b.

1

Let a,b be real numbers such that a < b+ — for all non-zero natural
n

number n. Show that a < b.

Solution Suppose contrary that a > b. By Archimedean Order Property

1

there exists n € N such that 0 < ; < a — b. By assumption, we have

1
a<b+ — <b+ (a—0b)=a, which is impossible.
n

Let a be a real number, show that sup{ z€ R |z <a } =a.
Solution. Let S={z € R |z <a }, then z <aforall z € S. So S is

14.

()

bounded above. We know that —|a| — 1 € S so that S is non-empty. By
supremum principle, we know sup S exists in R, and hence sup S < a. It
remains to show sup S = a. For any € > 0, set + = a — ¢, x < a hence

x € S5, and that z <a+¢€. Soa=supS.

(a) Prove that AU B® = (AU B)“.
(b) Prove that A*N B* C (AN B)*

(c) Let A, be a family of subsets of R. Does ;2 (4n
holds?

. Does the equality holds?

)" = (UnZy An)*

Hint: For (AU B)* C A*U B“, one can consider = ¢ AU B“.
Proof.

If suffices to prove that if A C B then A* C B%.

Let z € A% Then for any € > 0 the set (z —e,z+e)NA\ {z} #0. It
follows from A C B that (x —e,z+e)NA\{z} C (x —e,z+e)NB\ {z},
hence the latter is non-empty too, so x € B®.

Since A C AU B so we have A*U B* C (AU B)“.

Let ¢ (A% U B%), then x ¢ A* and x ¢ B®. So 36; > 0 (i = 1,2) such
that (x — d1,2 +61) N A\ {z} = 0 and (x — d2,x + d2) N B\ {z} = 0.
Set § = min{dy,d2} > 0 then it follows from the distributive law that
(x—=6z+0)N(AUB)\{z} =((z—=dz+d)N(ANB)\{z} )U( (x—
S,z+0)N(ANB)\{z} )=0U0=0. Hence = ¢ (AU B)".

It follows that (AU B)* = A U B“.

(b) (ANB)* C A*N B follows easily from AN B is a subset of A and subset

Take A = {1 |n € N}
and B = {—1 | n € N }. It is easy to check that A% = B* = {0}. But
ANB=10.s0 AN B*# (AN B)~.

of B. The equality does not hold in general.

Equality does not hold. For example A, =
them is a finite set so (A,)* = 0. Then U;'LO:

{%‘nEN}a:{O}.

{ L}, for all n € N. Each of
(A,)* =0 but (U2, 4,)" =



3 Exercise II1

1. Demonstrate, by means of examples, that the following ”definitions” of

convergence of a sequence (uy,) are incorrect:

Ve > 0, IN € N such that for all n > N, we have |u,, — | < .
Ve > 0, IN € N such that for all n > N, we have |u,, — | <e.

Ve > 0, IN € N such that for all n > N, we have |u, —[| < e.

)
)
)
)
)
) Ye >0, 3N € N such that for all n > N, we have |u,, — | <e.
) ¥e >0, 3N € N such that for all n < N, we have |u,, — | < e.
) Ye >0, IN € N such that for all n < N, we have |u,, — | <e.
(i) Ye >0, 3N € N such that for all n < N, we have |u, — | < e.
)

(j) Ye >0, IN € N such that for all n < N, we have |u,, — ] < e.

2. Determine which of the following statement is true or false:

(a) Monotone decreasing sequence is convergent.
(b) Every sequence has a monotone subsequence.
(¢) A bounded sequence (x,) is a bounded infinite subset of R.
(d) A bounded subset of R has at least an accumulation point.
(e) If S has non-empty S®, then S is infinite.
(f) If S is infinite, then S # 0.
g) If S is non-empty and bounded, then S # ().
h) If S is bounded, then S is bounded.
)
)
)

(i) If S is bounded, then S is bounded.

(
(

(j) If the supremum of S exists, then S is bounded.

k) If a sequence (x,,) is convergent, then { z,, | n € N }? is non-empty.
g y

4 Exercise IV

. Let (z,,) be a sequence, define another sequence y, = a and yp4+1 = p,

i.e. (yn) is obtained by inserting one extra term a to the sequence (z,,) in
its first term. Prove that (y,,) is convergent if and only if (x,,) convergent.

In this case, their limits are the same.

. Let (zy,) and (yy) be two convergent sequences with the same limits a.

Define another sequence (z,) as follows: z9, = x, and z9,-1 = y,, i.e.
(zn) = (Y1, 21,92, T2, * ,Yn, Tn, - ). Prove that (z,) is a convergent se-

quence with limit a.

. Let (z,,) and (y,) be two convergent sequences with limits a and b respec-

tively. Suppose that f : N — N and g : N — N be strictly increasing func-
tions such that f[N] and g[N] form a partition of N, i.e. f[N]Ng[N] = () and
FINJU g[N] = N. Define 2, = z5-1(, if n € f[N]; otherwise 2, = y -1,

Prove that (z,) is convergent if and only if a = b.

. Let (z,,) be a sequence such that all its subsequences (zp, )ren, except

the original one, are convergent. Prove that the limits of all subsequences
are the same.

Proof. Consider the subsequence (z,+1)nen by deleting the first term
from the original sequence. It follows from the assumption that this
subsequence (Zy41)nen is convergent and let @ = lim x,41. One can
insert back the z1 to (z41)nen as the first term, sont_lgl(iaot we obtain the
original sequence (x,)nen, so the original sequence converges to the same
limit a. It follows from that every subsequence will converges to the same

limit a.

. Let (xn)nen be a convergent sequence with limit a and suppose that

xn € Z for all n € N. Prove that (i) the sequence (x,) can take only
finitely many values, i.e. { z, € R | n =1,2,---, } is a finite set; and
(ii) a € Z.



Proof. Let a = lim z,,. Take ¢ = 1/2 > 0 then there exists N € N
such that for anynn o; N we have |z, —a| < 1/3. Then we have a €
(xn —1/3,2, +1/3) = I, for all n > N. This is a € [,y In- Note that
each interval [,, contains only one integer, namely x,,.

Suppose that there exist n,m € N such that z, # x,,, then it follows
from x, € Z that |z, — x,| > 1. We want to prove that these two
intervals (x, — 1/2,2, + 1/2) and (z,, — 1/2,z,, + 1/2) are disjoint as
follows. Compare the end points of intervals I,, = (v, —1/2, z,,+1/2) and
Ly = (#m—1/3, 2, +1/3) as follows: (2 —3)—(2n+3)| = |[Tm—2n—1| >
|2y — T | —2/3 > 1/3 > 0 and similarly, | (2, + ) — (z, — )| > 1/3 > 0.
But both intervals have length 2/3, so the result follows.

Asa € ﬂnz ~ In, it follows from the discussion above that x,, = zx for any
n > N. Then the subsequence (x,),>n is a constant sequence and hence
it converges to x . As a subsequence of the original convergent sequence
(n)nen. we know that their limits are the same, so a = zy € Z, and
hence (2, )nen- takes on only at most N values, namely, these N values

from the set {x1,z2, -+ ,xN11,2N = a}.

Determine the limits of the following sequences (if they exist):
(a) up =vn?2+1—mn; (b) v,=vn>+n—n.

Proof. lim u, =0. and lim v, = %
n—oo n—oo

Asvn?+1+n > vn2+n = 2n, we have u, = Vn2+1—-n =
24+1-—n? 1
nt " < —. It follows from Squeeze theorem

\/n2+1+n: vni+1+n 2n

and that lim 5~ =0 that 0 < lim u, < lim 1/(2n) = 0.

As lim ( 1—|—%—|—1):‘/1+ lim%+1:1—|—\ﬁ:2>0,sowehave
n—oo n—oo

a2 2
Uy =Vn2+n—n= ntn -6t " - 1 N
vn?+n+n  Vn?+n+n 1+141
n

as n — 00. (Give reasons.) This method explain how you can apply the

DN | =

theorem of limits to find the limit of a sequence.

Below you can verify the limit 1/2 from the simple estimation, for any

1
given € > 0 there exists N € N such that 5- < € so we have |v, — 5\ =

n 1'_ n—vn?+n _‘ (n? 4+ n) —n? _n o
vni4+n+n 2 2(n+vn?+n) 2(n + vn? +n)? 2n?
1
— < E.

2n

. Prove that the sequence { vVn?+n—n | n €N } is bounded from below

by%.

Proof I. As n € N, we have 5bn > 5 > 4, then 9n > 4n + 4 and hence
Vi 1 —Vn24+n—n=

3\/ﬁ>2\/n+1andﬁnally2m>3.Sowehavevn— n?4+n—n=

\/n2—|—n2—n2_ n B vn . vn >1
vnZ4+n+n Vn2+n+n Vn+l4+1" 2¢/n+1" 3

. Determine the limits of the following sequences (if they exist):

n —1)" n2 n2
(2) an = 255 (b) by = 5% () e = 3245 (a) dn = 22,

n n+1 n+(—1)"/n+1 —1)"n“+n—3
(e) en = "HTEL (f) f, = MHEYREL gy g, = (nns

Proof. In the following, we use the theorem about limit to find out the

limit first, then we verify the limit by means of e~N method.
3245 3+% 3

Cn = 9 4T 9 _ % — g asnh /oo (Give reasons.)

| 3| 3n2+5 3| |(6n+10) — (2n? — 12) 11

Cp — = |- — —| = _ )
) m2—4 2 2(2n% — 4) o2 — 4

Working backward 2n? — 4 > 2(n — 1)? <= 2n? — 4 > 2n? — 4n +
2 <= 4n > 2, which is obvious as n > 1.

For any € > 0 there exists NV € N such that N — 1 > % then for any

3 1o 11
o 2| =
" 2n2 —4 = 2(n—1)2

natural number n > N we have

11 < 11
29(n—1) = 2(N — 1)

<e.

. Let (up ) be a sequence of positive numbers converging to 0. Show that

( /up ) also converges to 0.
Proof. For any ¢ > 0, then €2 > 0, it follows from lim u,, = 0 that there

n—oo



10.

exists N € N such that |u, — 0| < &2 for all n > N. In particular, for all

n > N we have |\/t, — V0| = /u, < Ve2 = ¢. So we have lim ,/u, = 0.

Let ( u, )nen be a sequence converging to a € R = R U {+oco}. Define

sequence (by,)nen as follows: b, = Wt un for all n € N. Prove that
n

lim b, = a.

n—oo

Proof. One divide into 2 cases as follows:

If lim w, = oo, then for any given M > 0 there exists N € N such that

n—oo
for any n > N we have a,, > M + 1. Let C = uj; +ug + --- + uy. As
1/2 > 0 there exists K € N so that % < %

C —N)(M+1
Soforanynzvaehavebn:u1+ +un2 + (@ ) +):

n n
~N(M+1 — N(M +1
M 1+W>:M+’1—|C OIS a7 1t follows
n n
that lim b,, = oo.
n—oo

If lim u, = a € R, then for any € > 0 there exists N € N such that for
an;_)nooz N we have |up, —a| < /2, ie. a—¢/2 < u, < a+¢/2. Let
C=wu+u2s+---+uy. As |C — N(a + £/2)| > 0 there exists a nat-
ural number KX > N such that K > QIC_N(CH_ED)’. Then b, =

CHn— Nate/2)

uy+ -+ Uy CH+ (uns1+ - +up) _
n n
€ C—N(a+¢/2) € |C — N(a+¢e/2)| €
s < s < -
(\é+%\3(+ /2)‘11 < (at )+ - < (a+g)+
—N(a+e E €
<a4-+-= ,
K <a-+ 5 + 5 a+¢
2|C — N(a—¢/2
Similarly, one can choose L > K such that © (a=¢/2) < L. Then
€

for any n > L we have

:C—I—(UNH—I—-'-—i-un) >C’+(n—N)(a—5/2)

— -9+ ¢ " N(a—¢/2) - 5) Vo= Na-2/2)

2 |C N7(1 /2)| "
(3 — a—¢& g
> — =) — > — —_ = —
> ( 2) T >a 2+2 a—¢

11.

12.

13.

Consequently, for any natural number n > L we have b, € (a —e,a + ¢),

and hence the result follows.

Use the result of previous exercise to determine the limit lim {/(n!).

n—oo

One define a sequence ( u, ) as follows: u; = 1 and uy41 = 2u%.

(a) Show that if the sequence (uy) converges, then the limit is 0 or 1/2.

(b) Does the sequence (u,) converges?
Proof.

If (uy,) converges to a then its subsequence (u,1) converges to a as well.

Then it follows that (u2,,) converges to a?. Passing to limit, we have

a = limu, = lim 2u? = 2( lim u,)? = 242, i.e. a = 2a%. So it follows
n—oo n—oo

n—o0

that a(2a — 1) = 0 then a = 0 or 1/2.

No, the sequence (u,) does not converge.

One can show, by mathematical induction that u, > 2"~1, for all n > 1.
When n = 1 we have u; = 1 > 2°. Suppose that u,, > 277! it follows that
Uppr =202 =2 (27712 > 2. 2071 = gn = 2(n+1) -1,

If follows from wu, > 2"~! that the sequence (u,) is not bounded below,

and hence it is divergent.
(a) What does it mean to say that a sequence converges to a limit [7?
(b) State the monotone convergence axiom.

(c) For the following two statements, provide proofs or counterexamples:

i. Suppose that a,, < b, for every n and a,, — a, them a < b.

ii. Suppose that a, < b, for every n and a,, — a, them a < b.

3n? 44
d) Let a = ——.
(d) " 24 8n 47
limits, prove that a, converges to 3.

State carefully any theorems you use about



