
1 EDUC-250 Mathematical Analysis I

1.1 Exercise I

1. (Convergence). Given a sequence (xn)n≥1 of real numbers, prove that

the followings are equivalent:

(a) a is the limit of the sequence (xn)n≥1

(b) (ε − N definition). For any given ε > 0 there exists a natural

number N such that |xn − a| < ε for all n ≥ N.

(c) (Open Neighborhood definition). For any ε > 0, there are

only finitely many terms in the sequence ( xn ) lying outside the

neighborhood (a− ε, a + ε) of the limit a.

(d) (Subsequence form). Every subsequence (xnk
)k∈N of (xn) con-

verges to a.

Proof. (a) ⇔ (b). (b) is the definition of the concept of (a).

(b) ⇔ (c). As |xn − a| < ε ⇐⇒ − ε < xn − a < ε ⇐⇒ a − ε < xn <

a + ε ⇐⇒ xn ∈ (a− ε, a + ε).

If (b) holds, then for any given ε > 0, then

{N,N + 1, N + 2, · · · } ⊂ { k | xk ∈ (a− ε, a + ε) }. Hence we have,

{ k | xk /∈ (a−ε, a+ε) } ⊂ N\{N, N +1, N +2, · · · } = {1, 2, · · · , N −1}.
In particular, (c) holds.

Suppose that (c) holds, then for any given ε > 0 the following index

set { k | xk /∈ (a − ε, a + ε) } is finite, so it is bounded, and hence the

maximal element N exists. Then for any natural number n ≥ N + 1, we

have xn /∈ (a− ε, a + ε) does not hold, this means that xn ∈ (a− ε, a + ε)

for all n ≥ N + 1. So (b) holds.

(b) ⇔ (d). Suppose (d) holds, then the original sequence is its own

subsequence, then it follows from (d) that it is a convergent sequence

with limit a, and hence (b) holds.

Suppose (b) holds, let (xnk
) be a subsequence of (xn) then we have nk ≥ k

for all k ∈ N. It remains to show that any subsequence (xnk
)k∈N of (xn)

converges to the limit a. Since (b) holds, for any given ε > 0, there exists

N ∈ N such that for any natural number n ≥ N, we have |xn − a| < ε.

It follows from nk ≥ k that |xnk
− a| < ε for all k ≥ N. So we have

lim
k→∞

xnk
= a.

2. (Divergence). Let (xn) be a sequence. Prove that the followings are

equivalent:

(a) The sequence (xn) does not converge to x ∈ R.

(b) There exists an ε0 > 0 such that for any k ∈ N, there exists nk ∈ N
such that nk ≥ k and |xnk

− x| ≥ ε0 > 0.

(c) There exists an ε0 > 0 and a subsequence (xnk
) such that |x−xnk

| ≥
ε0 for all k ∈ N.

(d) There exists a subsequence (xnk
) of (xn) which does not converges

to x.

Proof. (a) ⇔ (b): It follows from the definition that (xn) converges to

the limit x

⇐⇒ ∀ε > 0 ( ∃N ∈ N ( ∀n ≥ N [ |xn − x| < ε ] ) ).

So we have (xn) does not converge to the limit x

⇐⇒ ¬[ ∀ε > 0 ( ∃N ∈ N ( ∀n ≥ N [ |xn − x| < ε ] ) ) ]

⇐⇒ ∃ε > 0 ¬[ ∃N ∈ N ( ∀n ≥ N [ |xn − x| < ε ] ) ]

⇐⇒ ∃ε > 0 [ ∀N ∈ N ¬( ∀n ≥ N [ |xn − x| < ε ] ) ]

⇐⇒ ∃ε > 0 [ ∀N ∈ N ( ∃n ≥ N ¬[ |xn − x| < ε ] ) ]

⇐⇒ ∃ε > 0 [ ∀N ∈ N ( ∃n ≥ N [ |xn − x| ≥ ε ] ) ].

Rewrite the last statement again as follows, there exists ε0 > 0 such that

for all k ∈ N there exist nk ∈ N with nk ≥ k such that |xnk
− x| ≥ ε0.

(b) ⇔ (c): (c) is just a restatement of (b), given that a subsequence (xnk
)

of (xn) must satisfy n1 < n2 < · · · < nk < nk+1 < · · · .



3. Suppose that a 6= 0 and b ∈ R, S ⊂ R. Define a map f : R → R by

f(x) = ax + b. Prove that ( f [S] )a = f [ Sa ].

4. Let a, b, c be elements of an ordered field F. Suppose that b > a and c > d.

Determine which of the following holds?

(a) ad + bc > ac + bd.

(b) ad + bc > ab + cd.

(c) ac > bd.

(d) a2 + b2 + c2 + d2 > ab + bc + cd + ad.

(e) a3d + bc3 > b3c + ad3.

(f) If a2 + b2 > 0 then (a + b)2 > 0.

(g) If (a + b)2 > 0 then a2 + b2 > 0.

5. Let A and B be non-empty subsets of R. Determine which of the following

holds?

(a) If A is bounded and B ⊂ A, then B is bounded.

(b) If A is bounded and A ⊂ B, then B is bounded.

(c) If A and B are bounded, then A ∩ B, A ∪ B, B \ A and A∆B =

(A ∪B) \ (A ∩B) are all bounded.

Repeat the same questions, if we replace ’bounded’ by ’bounded above’

and ’bounded below’ respectively.

6. Let A and B be non-empty subsets of R. Suppose that a < b for all a ∈ A

and b ∈ B. Determine which of the following holds?

(a) A ∩B 6= ∅.
(b) A is bounded above (bounded below).

(c) B is bounded above (bounded below).

(d) supA ≤ b for all b ∈ B. (e) a ≤ inf B for all a ∈ A.

(f) supA ≤ inf B. (g) inf A ≤ supB.

7. Let A and B be non-empty subsets of R. Suppose that a < b for all a ∈ A

and b ∈ B.

(a) Prove that if A ∩B 6= ∅, then supB = inf B.

(b) Give subsets A and B such that A ∩B = ∅ and supA < inf B.

(c) Give subsets A and B such that A ∩B = ∅ and supA = inf B.

8. (a) Let a, b, c be elements of an ordered field such that a > b and c > d.

Prove that a + c > b + d.

(b) Let a, b, c be elements of an ordered field such that a > b > 0 and

c > d > 0. Prove that ac > bd.

9. (a) Let a be a non-zero element of an ordered field K. Prove that a2 > 0.

(b) Let n be a non-zero natural number and K be an ordered field with

unity element 1k, i.e. multiplicative identity in K. Prove that

n · 1K = (1K + 1K + · · ·+ 1K)︸ ︷︷ ︸
n times of 1K

.

10. Let A,B, C be three non-empty subsets of R.

(a) Suppose that A is bounded and B ⊂ A. Prove that B is bounded

and supB ≤ supA.

(b) Suppose that A ∩ C is non-empty and that A and C are bounded.

Prove that A ∩ C is bounded and that

sup( inf A, inf C ) ≤ inf( A ∩ C) ≤ sup(A ∩ C) ≤ inf(supA, supC).

(c) Suppose that a ≤ b for all a ∈ A and b ∈ B. Prove that supA ≤
inf B. Give an example that the equality does not hold.

(d) Suppose that A and B are bounded and define A + B = { a +

b ∈ R | a ∈ A, b ∈ B }. Prove that A + B is bounded and that

inf(A + B) = inf A + inf B and sup(A + B) = supA + supB.



2 Exercise II

1. (a) Let In = [0, 1
n ] for all n ∈ N. Prove that if x > 0, then x /∈ ⋂

n∈N In.

Determine
⋂

n∈N In.

(b) Let Jn = (0, 1
n) for all n ∈ N. Prove that

⋂
n∈N Jn = ∅.

Recall that x ∈ [a, b] ⇐⇒ a ≤ x ≤ b.

Solution

(a) If x > 0 then by Archimedean Order Property there exists n ∈ N such

that 0 < 1
n < x. Then x /∈ [0, 1

n ] = In. Hence x /∈ ⋂
n∈N In.

If x < 0 then x /∈ In for all n ∈ N. In particular, x /∈ ⋂
n∈N In.

Obviously, 0 ∈ In for all n ∈ N, so that 0 ∈ ⋂
n∈N In. In this case,

{0} =
⋂

n∈N In.

2. Suppose that a, b, c, d ∈ F.

(a) If (a, b) ∩ (c, d) 6= ∅, prove that c < b and a < d.

(b) Suppose that a, b satisfies the following condition:

If x ∈ F such that x > a, then x > b.

Prove that b ≤ a.

(c) Let c < d, and a < b. If (a, b) ⊂ (c, d), and prove that c ≤ a < b ≤ d.

Proof.

(a) Since (a, b) ∩ (c, d) 6= ∅, there exists x ∈ (a, b) ∩ (c, d). It follows from

definition that a < x < b and c < x < d. Then c < x < b and a < x < d.

(b) Suppose contrary that b > a. Set y = b+a
2 , then y = b+a

2 > a+a
2 = a. If

follows from y > a that y > b, but the latter result violates b = b+b
2 >

b+a
2 = y.

(c) Suppose contrary, then if follows from a < b then that c > a or b > d.

If c > a, then choose x = a + c−a
2 , we have x = c+a

2 > a+a
2 = a, and

x = c+a
2 < c+c

2 = c < b, so a < x < c. Now compare the values x and b

as follows.

(i) If x < b then a < x < b hence x ∈ (a, b). It follows from (a, b) ⊂ (c, d)

that x ∈ (c, d). In particular, c < x, which violates x < c.

(ii) If x ≥ b, then a < b ≤ x < c. It follows that (a, b)∩ (c, d) = ∅, which

violates the assumption (a, b) ⊂ (c, d).

We leave the remaining case b > d to the reader as an exercise.

3. (i) Prove that if A ⊂ B and B is bounded, then A is bounded.

(ii) Prove that A ∪B and A ∩B are bounded; and

(iii) Prove that sup(A ∪ B) = sup{supA, supB}, and inf(A ∪ B) =

inf{inf A, inf B}.
Proof.

(i) Since B is bounded, there exist M > 0 such that |x| ≤ M for all x ∈ B. So

it follows from A ⊂ B that if x ∈ A ⇒ x ∈ B ⇒ |x| ≤ M. In particular,

A is bounded.

(ii) Let M = sup{supA, supB}. Then supA ≤ M and supB ≤ M.

x ∈ A ∪ B ⇐⇒ (x ∈ A) ∨ (x ∈ B) ⇒ (x ≤ supA) ∨ (x ≤ supB) ⇒ (x ≤
M) ∨ (x ≤ M) ⇐⇒ x ≤ M. So A ∪ B is bounded above. Similarly, one

can prove that x ∈ A ∪ B ⇒ x ≥ inf{inf A, inf B}, and hence A ∪ B is

bounded below. Finally, A ∩B is a subset of a bounded set A ∪B, so if

follows from (i) that A ∩B is bounded too.

(iii) We only prove that sup(A ∪B) = sup{supA, supB}. It follows from the

proof of (ii) that sup{supA, supB} is an upper bound of A∪B. For any

ε > 0, consider the following two cases: (1) If sup(A ∪ B) = supA then

there exists x ∈ A such that x > supA− ε, in particular, x ∈ A∪B such

that x > supA−ε, hence sup(A∪B) = supA = sup{supA, supB}. (2) If



sup(A ∪ B) = supB then there exists y ∈ B such that y > supB − ε,

in particular, y ∈ A ∪ B such that y > supB − ε, hence sup(A ∪ B) =

supB = sup{supA, supB}.
The remaining case for infimum is left as an exercise.

4. Determine the supremum and infimum of the following sets:

A = { 3(1 − 1
n) + 2(−1)n | n ∈ N}, B =

{ 1
n

+
1
m

∣∣∣ n,m ∈ N
}

and

C =
{ m

nm + 1

∣∣∣ n,m ∈ N
}

.

Proof.

A. Let E =
{

1 − 3
2n−1

∣∣∣ n ∈ N
}

and O =
{

5 − 3
2n

∣∣∣ n ∈ N
}

.

Since
(
1− 3

2n−1

)
and

(
5 + 3

2n

)
are monotone increasing sequence. Thus

supE = 1 and supO = 5. Thus inf E = −2 and inf O = 7
2 . We have

A = E ∪ O. In this case, supA = max{ supE, supO } = 5. Similarly

inf A = min{ inf E, inf O } = −2.

B. Since B =
{ 1

n
+

1
m

∣∣∣ n,m ∈ N
}

= P + P, where P =
{ 1

n

∣∣∣ n ∈ N
}

with supP = 1 and inf P = 0. It follows that supB = sup(P + P ) =

supP +supP = 1+1 = 2. Similarly, inf B = inf(P +P ) = inf P +inf P =

0 + 0 = 0.

C. Since
m

nm + 1
≤ m

nm
=

1
n
≤ 1, for all n,m ∈ N. Then 1 is an upper

bound of C. For any ε > 0 then 1
ε − 1 ∈ R, it follows from Archimedean

Order Property that there exists m0 ∈ N such that m0 >
1
ε
− 1. And

m0 >
1
ε
− 1 ⇐⇒ m0

m0(1) + 1
> 1− ε. Thus supC = 1.

Since 0 ≤ m

nm + 1
so 0 is a lower bound of C. For any ε > 0 there exists

n0 ∈ N such that
1
n0

≤ ε, it follows that
1

n0(1) + 1
≤ 1

n0
≤ 0 + ε. So

inf C = 0.

5. If (xn) is a monotone increasing sequence with limit a, prove that

sup{ xn ∈ R | n ∈ N} = a.

Hint: prove that a is an upper bound of the set { xn ∈ R | n ∈ N}.
Proof. (i) We first show that a is an upper bound of (xn)n∈N. Suppose

contrary that a is not an upper bound of (xn), then there exists N ∈ N
such that xN > a. In particular, for all n ≥ N we have xn ≥ xN > a.

In particular, |xn − a| = xn − a. Let ε = xN − a > 0, it follows from the

lim
n→∞xn = a that there exists M ∈ N such that for all n ≥ M we have

|xn − a| < ε. Choose m = 1 + max{N, M} then m > M and m > N so

xm − a = |xm − a| < ε = xN − a. In particular, xm < xM where m > M.

This violates the increasing property of (xn).

(ii) We now show that s is the least upper bound of the set { xn ∈
R | n ∈ N}. For any ε > 0, it follows from that there exists N ∈ N
such that a − xN = |xN − a| < ε. So we have xN > a − ε, and hence

sup{ xn ∈ R | n ∈ N} = a.

6. If S be a non-empty bounded subset of a complete ordered field F, and

a ∈ S. If a is an upper bound of S, prove that a = supS.

Proof. It follows from the Supremum Principle that supS exists in F.
Suppose that a 6= S, ie. a is not the least upper bound of S. In particular,

supS < a. Since supS is an upper bound of S we have a ≤ supS, which

contradicts supS < a. So the result follows.

7. Determine the supremum and infimum of the set

S =
{ n + 1

n2 + 32

∣∣∣ n ∈ N, n 6= 0
}

.

Solution. Let f(n) =
n + 1

n2 + 32
, then

f(n)− f(n + 1) =
n + 1

n2 + 32
− n + 2

(n + 1)2 + 32
=

−(n2 + 3n− 31)
(32 + n2)(32 + (n + 1)2)

.

Note that the denominator (32 + n2)(32 + (n + 1)2) is positive.

(a) If 1 ≤ n ≤ 4, the numerator n2 +3n− 31 < 0, and hence f(n+1) > f(n)

and so f(5) > f(4) > f(3) > f(2) > f(1).



(b) If n ≥ 5, then the numerator n2 +3n−31 > 0, and hence f(n) > f(n+1)

and so f(5) > f(6) > f(7) > · · · . Thus supS = f(5) = 2/19.

(c) It follows from n ≥ 1 that n + 1 ≥ 1 > 0, and n2 + 32 > 32 > 0, so

f(n) > 0 and that f(n) =
1 + n

32 + n2
≤ 1 + n

n2
≤ 2n

n2
=

2
n

. we see that 0 is

the lower bound of S, and by means of Archimedean Ordering property,

for any ε > 0 there exists n ∈ N such that 0 < 1
n < ε

2 . In particular, we

have f(n) < 2
n < ε = 0 + ε. So inf S = 0.

8. Determine the supremum and infinmum of the following subsets of R:

(i)
{

1 − 1
n
| n ∈ N, n 6= 0

}
; (ii)

{
1 +

(−1)n

n
| n ∈ N, n 6= 0

}
, and

(iii)
{ 2n

2n− 5
| n ∈ N

}
.

9. Let x be a strictly positive real number. Prove that there exists a strictly

positive integer n such that
1
n

< x < n.

Solution. For any x > 0, then 0 < 1/x. Let M = max{ x,
1
x
}, choose

n ∈ N such that M < n. In particular,
1
x
≤ M < n and x ≤ M < n. So

1
n

< x. Then
1
n

< x < n.

10. Prove that the following numbers are irrational:
√

3, 3
√

2,
√

2 +
√

3. Is

the sum of two irrational numbers still irrational?

11. Show that the set of irrational numbers is dense in R, i.e. for any real

numbers a < b, there exists an irrational number x such that a < x < b.

12. Let a, b be real numbers such that a ≤ b +
1
n

for all non-zero natural

number n. Show that a ≤ b.

Solution Suppose contrary that a > b. By Archimedean Order Property

there exists n ∈ N such that 0 < 1
n < a − b. By assumption, we have

a ≤ b +
1
n

< b + (a− b) = a, which is impossible.

13. Let a be a real number, show that sup{ x ∈ R | x < a } = a.

Solution. Let S = { x ∈ R | x < a }, then x < a for all x ∈ S. So S is

bounded above. We know that −|a| − 1 ∈ S so that S is non-empty. By

supremum principle, we know supS exists in R, and hence supS ≤ a. It

remains to show supS = a. For any ε > 0, set x = a − ε, x < a hence

x ∈ S, and that x < a + ε. So a = supS.

14. (a) Prove that Aa ∪Ba = (A ∪B)a.

(b) Prove that Aa ∩Ba ⊂ (A ∩B)a. Does the equality holds?

(c) Let An be a family of subsets of R. Does
⋃∞

n=1(An)a = (
⋃∞

n=1 An)a

holds?

Hint: For (A ∪B)a ⊂ Aa ∪Ba, one can consider x /∈ Aa ∪Ba.

Proof.

(a) If suffices to prove that if A ⊂ B then Aa ⊂ Ba.

Let x ∈ Aa, Then for any ε > 0 the set (x − ε, x + ε) ∩ A \ {x} 6= ∅. It

follows from A ⊂ B that (x− ε, x+ ε)∩A \{x} ⊂ (x− ε, x+ ε)∩B \{x},
hence the latter is non-empty too, so x ∈ Ba.

Since A ⊂ A ∪B so we have Aa ∪Ba ⊂ (A ∪B)a.

Let x /∈ (Aa ∪ Ba), then x /∈ Aa and x /∈ Ba. So ∃δi > 0 (i = 1, 2) such

that (x − δ1, x + δ1) ∩ A \ {x} = ∅ and (x − δ2, x + δ2) ∩ B \ {x} = ∅.
Set δ = min{δ1, δ2} > 0 then it follows from the distributive law that

(x− δ, x + δ) ∩ (A ∪B) \ {x} = ( (x− δ, x + δ) ∩ (A ∩B) \ {x} ) ∪ ( (x−
δ, x + δ) ∩ (A ∩B) \ {x} ) = ∅ ∪ ∅ = ∅. Hence x /∈ (A ∪B)a.

It follows that (A ∪B)a = Aa ∪Ba.

(b) (A∩B)a ⊂ Aa ∩Ba follows easily from A∩B is a subset of A and subset

of B. The equality does not hold in general. Take A = { 1
n |n ∈ N}

and B = {− 1
n | n ∈ N }. It is easy to check that Aa = Ba = {0}. But

A ∩B = ∅. so Aa ∩Ba 6= (A ∩B)a.

(c) Equality does not hold. For example An = { 1
n }, for all n ∈ N. Each of

them is a finite set so (An)a = ∅. Then
⋃∞

n=1(An)a = ∅ but (
⋃∞

n=1 An)a ={
1
n

∣∣∣ n ∈ N
}a

= {0}.



3 Exercise III

1. Demonstrate, by means of examples, that the following ”definitions” of

convergence of a sequence (un) are incorrect:

(a) ∃N ∈ N such that ∀ε > 0, we have |un − l| < ε for all n ≥ N.

(b) ∀N ∈ N such that ∃ε > 0, we have |un − l| < ε for all n ≥ N.

(c) ∀ε > 0, ∃N ∈ N such that for all n ≥ N, we have |un − l| < ε.

(d) ∀ε > 0, ∃N ∈ N such that for all n ≥ N, we have |un − l| ≤ ε.

(e) ∀ε ≥ 0, ∃N ∈ N such that for all n ≥ N, we have |un − l| < ε.

(f) ∀ε ≥ 0, ∃N ∈ N such that for all n ≥ N, we have |un − l| ≤ ε.

(g) ∀ε > 0, ∃N ∈ N such that for all n ≤ N, we have |un − l| < ε.

(h) ∀ε > 0, ∃N ∈ N such that for all n ≤ N, we have |un − l| ≤ ε.

(i) ∀ε ≥ 0, ∃N ∈ N such that for all n ≤ N, we have |un − l| < ε.

(j) ∀ε ≥ 0, ∃N ∈ N such that for all n ≤ N, we have |un − l| ≤ ε.

2. Determine which of the following statement is true or false:

(a) Monotone decreasing sequence is convergent.

(b) Every sequence has a monotone subsequence.

(c) A bounded sequence (xn) is a bounded infinite subset of R.

(d) A bounded subset of R has at least an accumulation point.

(e) If S has non-empty Sa, then S is infinite.

(f) If S is infinite, then Sa 6= ∅.
(g) If S is non-empty and bounded, then Sa 6= ∅.
(h) If S is bounded, then Sa is bounded.

(i) If Sa is bounded, then S is bounded.

(j) If the supremum of S exists, then S is bounded.

(k) If a sequence (xn) is convergent, then { xn | n ∈ N }a is non-empty.

4 Exercise IV

1. Let (xn) be a sequence, define another sequence yn = a and yn+1 = xn,

i.e. (yn) is obtained by inserting one extra term a to the sequence (xn) in

its first term. Prove that (yn) is convergent if and only if (xn) convergent.

In this case, their limits are the same.

2. Let (xn) and (yn) be two convergent sequences with the same limits a.

Define another sequence (zn) as follows: z2n = xn and z2n−1 = yn, i.e.

(zn) = (y1, x1, y2, x2, · · · , yn, xn, · · · ). Prove that (zn) is a convergent se-

quence with limit a.

3. Let (xn) and (yn) be two convergent sequences with limits a and b respec-

tively. Suppose that f : N→ N and g : N→ N be strictly increasing func-

tions such that f [N] and g[N] form a partition of N, i.e. f [N]∩g[N] = ∅ and

f [N] ∪ g[N] = N. Define zn = xf−1(n) if n ∈ f [N]; otherwise zn = yg−1(n).

Prove that (zn) is convergent if and only if a = b.

4. Let (xn) be a sequence such that all its subsequences (xnk
)k∈N, except

the original one, are convergent. Prove that the limits of all subsequences

are the same.

Proof. Consider the subsequence (xn+1)n∈N by deleting the first term

from the original sequence. It follows from the assumption that this

subsequence (xn+1)n∈N is convergent and let a = lim
n→∞xn+1. One can

insert back the x1 to (xn+1)n∈N as the first term, so that we obtain the

original sequence (xn)n∈N, so the original sequence converges to the same

limit a. It follows from that every subsequence will converges to the same

limit a.

5. Let (xn)n∈N be a convergent sequence with limit a and suppose that

xn ∈ Z for all n ∈ N. Prove that (i) the sequence (xn) can take only

finitely many values, i.e. { xn ∈ R | n = 1, 2, · · · , } is a finite set; and

(ii) a ∈ Z.



Proof. Let a = lim
n→∞xn. Take ε = 1/2 > 0 then there exists N ∈ N

such that for any n ≥ N we have |xn − a| < 1/3. Then we have a ∈
(xn − 1/3, xn + 1/3) = In for all n ≥ N. This is a ∈ ⋂

n≥N In. Note that

each interval In contains only one integer, namely xn.

Suppose that there exist n,m ∈ N such that xn 6= xm, then it follows

from xn ∈ Z that |xn − xm| ≥ 1. We want to prove that these two

intervals (xn − 1/2, xn + 1/2) and (xm − 1/2, xm + 1/2) are disjoint as

follows. Compare the end points of intervals In = (xn−1/2, xn+1/2) and

Im = (xm−1/3, xm+1/3) as follows: |(xm− 1
3)−(xn+ 1

3)| = |xm−xn−1| ≥
|xn−xm|− 2/3 ≥ 1/3 > 0 and similarly, |(xm + 1

3)− (xn− 1
3)| ≥ 1/3 > 0.

But both intervals have length 2/3, so the result follows.

As a ∈ ⋂
n≥N In, it follows from the discussion above that xn = xN for any

n ≥ N. Then the subsequence (xn)n≥N is a constant sequence and hence

it converges to xN . As a subsequence of the original convergent sequence

(xn)n∈N. we know that their limits are the same, so a = xN ∈ Z, and

hence (xn)n∈N. takes on only at most N values, namely, these N values

from the set {x1, x2, · · · , xN+1, xN = a}.

6. Determine the limits of the following sequences (if they exist):

(a) un =
√

n2 + 1− n; (b) vn =
√

n2 + n− n.

Proof. lim
n→∞un = 0. and lim

n→∞vn = 1
2 .

(a) As
√

n2 + 1 + n >
√

n2 + n = 2n, we have un =
√

n2 + 1 − n =
n2 + 1− n2

√
n2 + 1 + n

=
1√

n2 + 1 + n
<

1
2n

. It follows from Squeeze theorem

and that lim
n→∞

1
2n = 0 that 0 ≤ lim

n→∞un ≤ lim
n→∞1/(2n) = 0.

(b) As lim
n→∞

(√
1 + 1

n + 1
)

=
√

1 + lim
n→∞

1
n + 1 = 1 +

√
1 = 2 > 0, so we have

vn =
√

n2 + n−n =
√

n2 + n
2 − n2

√
n2 + n + n

=
n√

n2 + n + n
=

1√
1 + 1

n + 1
→ 1

2

as n → ∞. (Give reasons.) This method explain how you can apply the

theorem of limits to find the limit of a sequence.

Below you can verify the limit 1/2 from the simple estimation, for any

given ε > 0 there exists N ∈ N such that 1
2n < ε so we have |vn − 1

2
| =

∣∣∣∣
n√

n2 + n + n
− 1

2

∣∣∣∣ =

∣∣∣∣∣
n−√n2 + n

2(n +
√

n2 + n)

∣∣∣∣∣ =
∣∣∣∣

(n2 + n)− n2

2(n +
√

n2 + n)2

∣∣∣∣ <
n

2n2
=

1
2n

< ε.

7. Prove that the sequence { √n2 + n− n | n ∈ N } is bounded from below

by 1
3 .

Proof I. As n ∈ N, we have 5n ≥ 5 > 4, then 9n > 4n + 4 and hence

3
√

n > 2
√

n + 1 and finally
√

n

2
√

n+1
> 1

3 . So we have vn =
√

n2 + n− n =
√

n2 + n
2 − n2

√
n2 + n + n

=
n√

n2 + n + n
=

√
n√

n + 1 + 1
>

√
n

2
√

n + 1
>

1
3
.

8. Determine the limits of the following sequences (if they exist):

(a) an = n
n+1 ; (b) bn = (−1)n

n ; (c) cn = 3n2+5
2n2−4

; (d) dn = 2n2+3
n−1 ;

(e) en = n+
√

n+1
n−3 ; (f) fn = n+(−1)n√n+1

n−3 ; (g) gn = (−1)nn2+n−3
2n2+n−4

.

Proof. In the following, we use the theorem about limit to find out the

limit first, then we verify the limit by means of ε–N method.

cn =
3n2 + 5
2n2 − 4

=
3 + 5

n2

2− 4
n2

→ 3
2
, as n →∞. (Give reasons.)

|cn − 3
2
| =

∣∣∣∣
3n2 + 5
2n2 − 4

− 3
2

∣∣∣∣ =
∣∣∣∣
(6n2 + 10)− (2n2 − 12)

2(2n2 − 4)

∣∣∣∣ =
11

2n2 − 4
.

Working backward 2n2 − 4 > 2(n − 1)2 ⇐⇒ 2n2 − 4 > 2n2 − 4n +

2 ⇐⇒ 4n > 2, which is obvious as n ≥ 1.

For any ε > 0 there exists N ∈ N such that N − 1 > 11
2ε then for any

natural number n > N we have
∣∣∣∣cn − 3

2

∣∣∣∣ =
11

2n2 − 4
<

11
2(n− 1)2

<

11
2(n− 1)

≤ 11
2(N − 1)

< ε.

9. Let ( un ) be a sequence of positive numbers converging to 0. Show that

(
√

un ) also converges to 0.

Proof. For any ε > 0, then ε2 > 0, it follows from lim
n→∞un = 0 that there



exists N ∈ N such that |un − 0| < ε2 for all n ≥ N. In particular, for all

n ≥ N we have |√un−
√

0| = √
un <

√
ε2 = ε. So we have lim

n→∞
√

un = 0.

10. Let ( un )n∈N be a sequence converging to a ∈ R = R ∪ {+∞}. Define

sequence (bn)n∈N as follows: bn =
u1 + · · ·+ un

n
for all n ∈ N. Prove that

lim
n→∞bn = a.

Proof. One divide into 2 cases as follows:

(i) If lim
n→∞un = ∞, then for any given M > 0 there exists N ∈ N such that

for any n ≥ N we have an ≥ M + 1. Let C = u1 + u2 + · · · + uN . As

1/2 > 0 there exists K ∈ N so that |C−N(M+1)|
K < 1

2 .

So for any n ≥ K we have bn =
u1 + · · ·+ un

n
≥ C + (n−N)(M + 1)

n
=

M+
(

1 +
C −N(M + 1)

n

)
= M+

∣∣∣∣1−
|C −N(M + 1)|

n

∣∣∣∣ > M. It follows

that lim
n→∞bn = ∞.

(ii) If lim
n→∞un = a ∈ R, then for any ε > 0 there exists N ∈ N such that for

any n ≥ N we have |un − a| < ε/2, i.e. a − ε/2 < un < a + ε/2. Let

C = u1 + u2 + · · · + uN . As |C − N(a + ε/2)| ≥ 0 there exists a nat-

ural number K ≥ N such that K ≥ 2|C −N(a + ε/2)|
ε

. Then bn =

u1 + · · ·+ un

n
=

C + (uN+1 + · · ·+ un)
n

<
C + (n−N)(a + ε/2)

n
=

(a +
ε

2
) +

C −N(a + ε/2)
n

≤ (a +
ε

2
) +

|C −N(a + ε/2)|
n

≤ (a +
ε

2
) +

|C −N(a + ε/2)|
K

≤ a +
ε

2
+

ε

2
= a + ε.

Similarly, one can choose L > K such that
2|C −N(a− ε/2)|

ε
< L. Then

for any n ≥ L we have

bn =
C + (uN+1 + · · ·+ un)

n
>

C + (n−N)(a− ε/2)
n

= (a− ε

2
) +

C −N(a− ε/2)
n

≥ (a− ε

2
)− |C −N(a− ε/2)|

n

≥ (a− ε

2
)− |C −N(a− ε/2)|

L
≥ a− ε

2
+

ε

2
= a− ε.

Consequently, for any natural number n ≥ L we have bn ∈ (a− ε, a + ε),

and hence the result follows.

11. Use the result of previous exercise to determine the limit lim
n→∞

n
√

(n!).

12. One define a sequence ( un ) as follows: u1 = 1 and un+1 = 2u2
n.

(a) Show that if the sequence (un) converges, then the limit is 0 or 1/2.

(b) Does the sequence (un) converges?

Proof.

(a) If (un) converges to a then its subsequence (un+1) converges to a as well.

Then it follows that (u2
n+1) converges to a2. Passing to limit, we have

a = lim
n→∞un = lim

n→∞2u2
n = 2( lim

n→∞un)2 = 2a2, i.e. a = 2a2. So it follows

that a(2a− 1) = 0 then a = 0 or 1/2.

(b) No, the sequence (un) does not converge.

One can show, by mathematical induction that un ≥ 2n−1, for all n ≥ 1.

When n = 1 we have u1 = 1 ≥ 20. Suppose that un ≥ 2n−1 it follows that

un+1 = 2u2
n = 2 · (2n−1)2 ≥ 2 · 2n−1 = 2n = 2(n+1)−1.

If follows from un ≥ 2n−1 that the sequence (un) is not bounded below,

and hence it is divergent.

13. (a) What does it mean to say that a sequence converges to a limit l?

(b) State the monotone convergence axiom.

(c) For the following two statements, provide proofs or counterexamples:

i. Suppose that an ≤ bn for every n and an → a, them a ≤ b.

ii. Suppose that an < bn for every n and an → a, them a < b.

(d) Let an =
3n2 + 4

n2 + 8n + 7
. State carefully any theorems you use about

limits, prove that an converges to 3.


