EDUC 250 Mathematical Analysis Test One

Due: 26th October, 2004. Hand in before the lecture starts at 9:00 a.m.

- 1. Let $A = \{a_1, a_2, \dots, a_n\}$ and $B = \{b_1, b_2, \dots, b_n\}$ be subsets of an ordered field \mathbb{F} . Define
 - (i) $A + B = \{ a_i + b_j \mid i, j = 1, 2, \dots, n \};$

(ii)
$$A - B = \{ a_i - b_j \mid i, j = 1, 2, \dots, n \};$$

(iii)
$$A \cdot B = \{ a_i b_j \mid i, j = 1, 2, \cdots, n \};$$

(iv) $A/B = \{ a_i/b_j \mid i, j = 1, 2, \dots, n, \text{ and } b_j \neq 0 \}.$

Let $M_A = \max A, M_B = \max B, m_A = \min A$ and $m_B = \min B$. Answer the following questions with correct answer, no proof is needed.

- (a) Give the formula of supA and inf A in terms of M_A, m_A .
- (b) If $\sup A = \inf A$, what can you say about A?
- (c) Give the formula of the maximum element of A B in terms of the M_A, M_B, m_A and m_B .
- (d) Give two subsets A and B such that $\max(A \cdot B) \neq \max A \cdot \max B$.
- (e) Give the formula of the maximum element of $A \cdot B$ in terms of the M_A, M_B, m_A and m_B .
- (f) Give the formula of the maximum element of A/B in terms of the M_A, M_B, m_A and m_B , provided $b \neq 0$ for all $b \in B$.
- (g) (Bonus) Give the formula of the maximum element of $(A \cup \{0\}) (A \cup \{0\})$ in terms of M_A, m_A .
- 2. (a) State the definitions of a bounded subset B, and that of an unbounded subset U of an ordered field \mathbb{F} .
 - (b) Give an example of *unbounded* subset of the real number field ℝ. Justify your claim.

- (c) Let A, B be non-empty, bounded subsets of an ordered field \mathbb{F} . Prove that $A \cap B$ and $A \cup B$ are bounded subsets of \mathbb{F} .
- (d) Let *n* be a fixed natural number, *A* be a subset of positive elements of an ordered field. Define $A^n = \{x_1 \cdot x_2 \cdots x_n \mid x_i \in A \ (1 \le i \le n)\}$. Prove that A^n is bounded above if and only if *A* is bounded above.
- 3. (a) State the Supremum Principle.
 - (b) Suppose that \mathbb{F} is an ordered field satisfying supremum principle, prove that a non-empty, bounded below subset of \mathbb{F} has an infimum.
 - (c) (Bonus) Let Q be the field of rational numbers with the usual addition, multiplication and ordering. Does the supremum principle hold for Q? Give an explanation for your answer.
- 4. Let A be a non-empty, bounded above subset of an ordered field \mathbb{F} . Suppose that sup A exists in \mathbb{F} and l is an upper bound of A.
 - (a) Is |l| is an upper bound of A?
 - (b) State a necessary and sufficient condition that $l \neq \sup A$. Prove that your answer is correct.
 - (c) Prove that $l = \sup A$ if and only if for any $n \in \mathbb{N}$, the number $l \frac{1}{n}$ is not an upper bound of S.
 - (d) (Bonus) Suppose that $\sup(A \setminus \{l\}) = l$, prove that for any $\varepsilon > 0$ the set $A \cap (l \varepsilon, l)$ is non-empty and is not finite.
- 5. Let $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ be the set of all natural numbers, integers, rational numbers, real numbers respectively. Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by $f(x) = \frac{2x}{1+x^2}$ for all $x \in \mathbb{R}$. Determine $\sup f[X_i]$ and $\inf f[X_i]$ when $X_1 = \mathbb{R}$; $X_2 = \mathbb{Q}$; $X_3 = \mathbb{Z}$ and $X_4 = \mathbb{N}$.

Hint: Recall that $f[S] = \{ f(s) \mid s \in S \}$, and you may use trigonometric functions, or some famous inequalities.