EDUC 250 Mathematical Analysis Solution of Homework I

Let \mathbb{F} be a field, $a, b, c, d \in \mathbb{F}$. Prove that the followings hold:

1. -(-a) = a.

Proof. By definition, -(-a) + (-a) = 0, and a + (-a) = 0. By the uniqueness of solution of equation x + (-a) = 0, we have -(-a) = a.

2. -(a-b) = b-a.

Proof. Let x = -(a - b), by definition, we have x + (a - b) = 0. Hence x + a = x + a + 0 = x + a + (-b + b) = (x + (a - b)) + b = 0 + b = b. And x = x + 0 = x + (a - a) = (x + a) + (-a) = b - a. Then by uniqueness, we have -(a - b) = b - a.

3. $a \cdot (-b) = -(a \cdot b) = (-a) \cdot b$.

Proof. Let y = -b, then y+b = 0. Multiplying by a, we have $a \cdot y + a \cdot b = 0$. Hence we have we have $-(a \cdot b) = ay = a \cdot (-b)$. Similarly, we have $(-a) \cdot b = b \cdot (-a) = -(b \cdot a) = -(a \cdot b)$.

Remark. It follows from this result that $(-1) \cdot a = -(1 \cdot a) = -a$.

 $4. (-a) \cdot (-b) = a \cdot b.$

Proof. First show that -(-x) = x for all $x \in \mathbb{F}$. By definition, x + (-x) = 0, and (-(-x)) + (-x) = 0. By the uniqueness of the solution of the equation y + (-x) = 0, we have x = -(-x). By (a), we have $(-a) \cdot (-b) = -((-a) \cdot b) = -(-(a \cdot b)) = a \cdot b$.

Remark. It follows from this result that $-(a-b) = (-1) \cdot (a-b) = (-1) \cdot (a-b) = (-1) \cdot (a-b) = -a+1 \cdot b = b-a$.

5. a/a = 1 for all $a \in \mathbb{F} \setminus \{0\}$.

Proof I. By definition, $a/b = a \cdot b^{-1}$, so we have $a/a = a \cdot a^{-1} = 1$.

Proof II. By definition, a/a is the unique solution of the equation $a \cdot x = a$ in x. Rewrite the equation into $0 = a \cdot x + (-a) = a \cdot x + (-a) \cdot 1 = a \cdot x + a \cdot (-1) = a \cdot (x + (-1))$. It follows from that $a \neq 0$ and after multiplying the reciprocal of a, we have $x - 1 = 1 \cdot (x - 1) = (a^{-1} \cdot a) \cdot (x - 1) = a \cdot (x - 1)$

$$a^{-1} \cdot (a \cdot (x-1)) = a^{-1} \cdot 0 = 0$$
. And then $a/a = x = x+0 = x+((-1)+1) = (x-1)+1=0+1=1$.

Remark. Sometimes, one can start from the axiom of cancellation to solve equation: $a \cdot x = a \cdot b \ \land \ a \neq 0 \Rightarrow x = b$. In part, proof II is based on the cancellation.

6. $(a \cdot b)^{-1} = a^{-1} \cdot b^{-1}$ for all $a, b \in \mathbb{F} \setminus \{0\}$.

Proof. As $(a \cdot b)^{-1}$ is the unique solution of the equation $(a \cdot b) \cdot x = 1$. It remains to show $a^{-1} \cdot b^{-1}$ also satisfies the equation above. From $1 = (a \cdot b) \cdot x = a \cdot (b \cdot x)$, So we have $a^{-1} = a^{-1} \cdot 1 = a^{-1} \cdot (a \cdot (b \cdot x)) = (a^{-1} \cdot a) \cdot (b \cdot x) = 1 \cdot (b \cdot x) = b \cdot x$. Repeating the same procedure, we have $b^{-1} \cdot a^{-1} = b^{-1} \cdot (b \cdot x) = \dots = x$.

Remark. As $a \cdot a^{-1} = 1$, so $a^{-1} = 1/a$. And so it follows $\frac{1}{a \cdot b} = \frac{1}{a} \cdot \frac{1}{b}$.

7. $\left(\frac{a}{b}\right) \cdot \left(\frac{c}{d}\right) = \frac{a \cdot c}{b \cdot d}$ for all $b, d \in \mathbb{F} \setminus \{0\}$.

Proof. We first to show that $\left(\frac{1}{a}\right) \cdot b = \frac{b}{a}$ by two methods:

 $\mathbf{I.} \left(\frac{1}{a}\right) \cdot b = (1 \cdot a^{-1}) \cdot b = a^{-1} \cdot b = b/a.$

II. Let $y = \frac{b}{a}$, then ay = b. Multiplying a^{-1} , we have $y = a^{-1} \cdot b = \frac{1}{a} \cdot b$. Returning to the proof of the original problem, $\frac{a}{b} \cdot \frac{c}{d} = (a \cdot \frac{1}{b}) \cdot (\frac{1}{d} \cdot c) = \dots = a \cdot (\frac{1}{b} \cdot \frac{1}{d}) \cdot c = (a \cdot \frac{1}{b \cdot d}) \cdot c = \dots = (a \cdot c) \cdot \frac{1}{b \cdot d} = \frac{a \cdot c}{b \cdot d}$.

8. $\frac{a}{b} = \frac{a \cdot c}{b \cdot c}$, where b and $c \neq 0$.

Proof. Let x be the solution of the equation bx = a, then $x = \frac{a}{b}$, we have $(c \cdot b) \cdot x = c \cdot (b \cdot x) = c \cdot a$. By the uniqueness of the solution, we know that $\frac{a}{b} = x = \frac{c \cdot a}{c \cdot b}$.

 $9. \ \frac{a}{c} + \frac{b}{c} = \frac{(a+b)}{c}.$

Proof. Let $x = \frac{a}{c}$ and $y = \frac{b}{c}$. Then we have $c \cdot x = a$ and $c \cdot y = b$.

Adding these together, we have $c \cdot (x+y) = c \cdot x + c \cdot y = a+b$. By the uniqueness of the solution, we have $x+y = \frac{a+b}{c}$.

10.
$$\frac{(-a)}{b} = \frac{a}{-b} = -\left(\frac{a}{b}\right).$$

$$\mathbf{Proof I.} \frac{(-a)}{b} = \frac{(-a) \cdot (-1)}{b \cdot (-1)} = \frac{a}{-b}. \text{ And } -\left(\frac{a}{b}\right) = -\left(a \cdot \frac{1}{b}\right) = (-a) \cdot \frac{1}{b} = \frac{-a}{b}.$$

Proof II. $\frac{(-a)}{b} = \frac{1}{b} \cdot (-a) = -\left(\frac{1}{b} \cdot a\right) = -\left(\frac{a}{b}\right)$. Let $y = \frac{a}{-b}$, then we have $a = (-b) \cdot y = -(b \cdot y)$. So we have $a + (b \cdot y) = 0$. Hence we have $b \cdot y = b \cdot y + 0 = b \cdot y + (a + (-a)) = (b \cdot y + a) + (-a) = 0 + (-a) = -a$. By the uniqueness, we have $y = \frac{-a}{b}$.

11.
$$\frac{(a/b)}{(c/d)} = \frac{a \cdot d}{b \cdot c} = \left(\frac{a}{b}\right) \cdot \left(\frac{d}{c}\right)$$
, for all $b, c \in \mathbb{F} \setminus \{0\}$.

Proof. Let $y = \frac{(a/b)}{(c/d)}$. Then $\left(\frac{c}{d}\right) \cdot y = \frac{a}{b}$. After multiplying by $\frac{d}{c}$, we have $y = 1 \cdot y = \frac{dc}{cd} \cdot y = \left(\frac{d}{c} \cdot \frac{c}{d}\right) \cdot y = \frac{d}{c} \cdot \left(\frac{c}{d} \cdot y\right) = \frac{d}{c} \cdot \frac{a}{b} = \frac{ad}{bc} = \frac{a}{b} \cdot \frac{d}{c}$.

12.
$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd} \text{ for all } b, d \in \mathbb{F} \setminus \{0\}.$$

$$\mathbf{Proof I.} \frac{a}{b} + \frac{c}{d} = \frac{ad}{bd} + \frac{cb}{bd} = \frac{ad + bc}{bd}.$$

$$\mathbf{Proof II.} \text{ Let } y = \frac{ad + bc}{bd}, \text{ then } (bd) \cdot y = ad + bc. \text{ Check that}$$

$$(bd) \cdot \left(\frac{a}{b} + \frac{c}{d}\right) = (bd) \cdot \frac{a}{b} + (bd) \cdot \frac{c}{d} = \dots = \frac{b \cdot ad}{b \cdot 1} + \frac{d \cdot bc}{d \cdot 1} = \frac{b}{b} \cdot \frac{ad}{1} + \frac{d}{d} \cdot \frac{bc}{1} = \dots$$

$$= 1 \cdot (ad) + 1 \cdot (bc) = ad + bc. \text{ Thus by uniqueness of the solution of the}$$

$$\text{equation } (bd) \cdot y = ad + bc, \text{ we know that } \frac{ad + bc}{bd} = \frac{a}{b} + \frac{c}{d}.$$

Remark. There are some proofs which are shorter, if one makes use of the existence of a^{-1} whenever $a \neq 0$.