EDUC 250 Mathematical Analysis Homework I

Due: 14th September, 2004. Hand in before the lecture starts at 9:00 a.m. Let \mathbb{F} be a field, $a, b, c, d \in \mathbb{F}$. Prove the followings:

1.
$$-(-a) = a$$
.

2.
$$-(a-b) = b-a$$
.

3.
$$a \cdot (-b) = -(a \cdot b) = (-a) \cdot b$$
.

4.
$$(-a) \cdot (-b) = a \cdot b$$
.

5.
$$a/a = 1$$
 for all $a \in \mathbb{F} \setminus \{0\}$.

6.
$$(a \cdot b)^{-1} = a^{-1} \cdot b^{-1}$$
.

7.
$$\left(\frac{a}{b}\right) \cdot \left(\frac{c}{d}\right) = \frac{ac}{bd}$$
 for all $b, d \in \mathbb{F} \setminus \{0\}$.

$$8. \ \frac{a}{b} = \frac{a \cdot c}{b \cdot c}.$$

$$9. \ \frac{a}{c} + \frac{b}{c} = \frac{(a+b)}{c}.$$

$$10. \ \frac{(-a)}{b} = \frac{a}{-b} = -\left(\frac{a}{b}\right).$$

11.
$$\frac{(a/b)}{(c/d)} = \frac{a \cdot d}{b \cdot c} = \left(\frac{a}{b}\right) \cdot \left(\frac{d}{c}\right)$$
, for all $b, c \in \mathbb{F} \setminus \{0\}$.

12.
$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$
, for all $b, d \in \mathbb{F} \setminus \{0\}$.

EDUC 250 Mathematical Analysis Homework II

Due: 15th September, 2004. Hand in before the lecture starts at 9:00 a.m.

- 1. Suppose that a, b are in an ordered field \mathbb{F} . If a > b and c > d, prove that (i) a+c > b+d; (ii) a-b > d-c; (iii) -b+c > -a+d; (iv) -b-d > -a-c.
- 2. Suppose that $a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n$ are elements in a ring \mathbb{F} , which is not necessarily commutative. Use the mathematical induction to prove that

$$\left(\sum_{i=1}^{m} a_i\right) \cdot \left(\sum_{j=1}^{n} b_j\right) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_i b_j.$$