
EDUC 250 Mathematical Analysis Homework III

Due: 21st September, 2004. Hand in before the lecture starts at 9:00 a.m.

1. Suppose that a, b and ai, bi ( i = 1, 2, · · · , n ) are in an ordered field F.

(a) Prove that
|a|+ a

2
=





0 if a < 0;

a if a ≥ 0.

Proof. If a < 0, then |a| = −a, so we have
|a|+ a

2
=
−a + a

2
=

0
2

= 0.

If a ≥ 0, then |a| = a, so we have
|a|+ a

2
=

a + a

2
= a. The last

equality follows from a + a = 1 · a + 1 · a = (1 + 1) · a = 2 · a.

(b) Define a ∨ b = max{a, b} =





a if b < a;

b if b ≥ a,
and

a ∧ b = min{a, b} =





b if b < a;

a if b ≥ a.

Prove that (i)
a + b + |b− a|

2
= max{a, b} and,

(ii)
a + b− |b− a|

2
= min{a, b}.

Proof. (i) If a ≥ b, then a − b ≥ 0, and so |b − a| = a − b, in this

case,
a + b + |b− a|

2
=

a + b + a− b

2
=

a + a

2
= a = max{a, b}.

Suppose that a < b, then |b − a| = b − a, and so
a + b + |b− a|

2
=

a + b + b− a

=
b + b2 = b = max{a, b}.

(ii) Leave it to you.

2. Prove, by means of mathematical induction, that

|a1 + a2 + · · ·+ an| ≤ |a1|+ · · ·+ |an|.

Determine when the equality holds.

Proof. Proceed by means of mathematical induction on n ≥ 1:

(a) If n = 1 then |a1| = |a1|, and if n = 2, then it follows from triangle

inequality.

(b) Suppose that the inequality holds for n = 1, 2, · · · , k, then we now

prove the inequality holds for n = k + 1. Let ai (1 ≤ i ≤ k + 1) be

in F, then |a1 + a2 + · · · + ak+1| = |(a1 + a2 + · · · + ak) + ak+1| ≤
|a1 + a2 + · · ·+ ak|+ |ak+1| ≤ (|a1|+ · · ·+ |ak|) + |ak+1|.

And hence result follows from mathematical induction.

Return to the cases of equality, it holds if and only if the signs of

a1, a2, · · · , an are all non-negative, or all all non-positive. We leave the

proof as an exercise.

3. Let S = { a1, a2 · · · , an } be a set of n elements in F. Define

max{a1, a2, · · · , an} = max{ max{a1, a2, · · · , an−1}, an } for n ≥ 3

inductively, and minS is defined similarly. Prove that maxS and

minS is independent of the choice of the ordering of the elements,

i.e.max{ aπ(1), aπ(2) · · · , aπ(n) } = max{a1, a2, · · · , an}, where π is a per-

mutation of the index set {1, 2, · · · , n}, and similar equality for min .

Proof. Let π : {1, 2, · · · , n} → {1, 2, · · · , n} be a bijective mapping. Let

Bk = max{ aπ(1), aπ(2) · · · , aπ(k) }, and Ak = max{a1, a2, · · · , ak} for

1 ≤ k ≤ n. Want to prove that Bn = An.

(a) By definition of max, we have Bn ≥ aπ(n) and Bn ≥ Bn−1, and

it must be equal to one of them. It follows from mathematical

induction that Bn ≥ aπ(i) (1 ≤ i ≤ n), and Bn must be equal

to one of them, says aπ(I).

(b) Similarly, we have An ≥ ai (1 ≤ i ≤ n), and An must be equal to

one of them, says aJ . Then let K such that π(K) = J.

Then An = aJ = aπ(K) ≤ Bn, and similarly, Bn = aπ(I) ≤ An. Thus

An = Bn.



4. Suppose that bi > 0 ( i = 1, 2, · · · , n ), and S = { a1

b1
,
a2

b2
, · · · ,

an

bn
},

prove, by means of mathematical induction on n, that

minS ≤ a1 + a2 + · · ·+ an

b1 + b2 + · · ·+ bn
≤ maxS.

Proof. Let maxS = M, then we have
ai

bi
≤ M, and hence ai ≤

biM (i = 1, 2, · · · , n). Adding these inequalities ( in fact it follows from

mathematical induction on n, which we had omitted here ), we have

a1 +a2 + · · ·+an ≤ (b1M +b2M + · · ·+bnM) = M ·(b1 +b2 + · · ·+bn). As

b1 + b2 + · · ·+ bn > 0 + 0 + · · ·+ 0 = 0, we have
a1 + a2 + · · ·+ an

b1 + b2 + · · ·+ bn
≤ M.

One can prove the similar result for minS.

5. (Supplementary Question). Let F be an ordered field. Prove that (i) x2 +

xy + y2 ≥ 0 for any x, y ∈ F; (ii) Equality holds if and only if x = y = 0.

Proof. One can easily prove that 2 = 1 + 1 > 0, 3 = 2 + 1 > 0 + 0 = 0

and 4 = 3 + 1 > 0 + 0 = 0. Moreover, we know that z2 ≥ 0 for all z ∈ F.
So we have 4(x2 + xy + y2) = (x + x + y)2 + (y2 + y2 + y2) ≥ 0 + 0 = 0.

Then the result follows from 4 > 0 and division by 4.

Equality holds if and only if (2x + y)2 = 0 and y2 + y2 + y2 = 0, which in

turns are equivalent to x = y = 0.

6. (Supplementary Question). Prove that: if a 6= 0 and n is a positive inte-

ger, then a + a + · · ·+ a︸ ︷︷ ︸
n terms

6= 0.

Proof. It suffice to prove that 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n terms

6= 0. We know that 1 ∈ P,

and it follows from the positivity is closed under addition and mathemat-

ical induction that 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n terms

∈ P, and hence the sum is non-zero.

Remark. Even though, we have not introduced natural numbers yet.


