EDUC 250 Mathematical Analysis Homework III

Due: 21st September, 2004. Hand in before the lecture starts at 9:00 a.m.

1. Suppose that a, b and a_i, b_i ($i = 1, 2, \dots, n$) are in an ordered field \mathbb{F} .

(a) Prove that
$$\frac{|a|+a}{2} = \begin{cases} 0 & \text{if } a < 0; \\ a & \text{if } a \ge 0. \end{cases}$$

Proof. If $a < 0$, then $|a| = -a$, so we have $\frac{|a|+a}{2} = \frac{-a+a}{2} = \frac{0}{2} = 0.$
If $a \ge 0$, then $|a| = a$, so we have $\frac{|a|+a}{2} = \frac{a+a}{2} = a$. The last equality follows from $a + a = 1 \cdot a + 1 \cdot a = (1+1) \cdot a = 2 \cdot a.$
(b) Define $a \lor b = \max\{a, b\} = \begin{cases} a & \text{if } b < a; \\ a & \text{if } b \ge a, \end{cases}$
(b) Define $a \lor b = \max\{a, b\} = \begin{cases} b & \text{if } b < a; \\ a & \text{if } b \ge a. \end{cases}$
Prove that (i) $\frac{a+b+|b-a|}{2} = \max\{a,b\}$ and,
(ii) $\frac{a+b-|b-a|}{2} = \min\{a,b\}.$
Proof. (i) If $a \ge b$, then $a - b \ge 0$, and so $|b-a| = a - b$, in this case, $\frac{a+b+|b-a|}{2} = \frac{a+b+a-b}{2} = \frac{a+a}{2} = a = \max\{a,b\}.$
Suppose that $a < b$, then $|b-a| = b - a$, and so $\frac{a+b+|b-a|}{2} = \frac{a+b+b-a}{2} = \frac{a+b+b-a}{2} = b = \max\{a,b\}.$
(ii) Leave it to you.

2. Prove, by means of mathematical induction, that

$$|a_1 + a_2 + \dots + a_n| \le |a_1| + \dots + |a_n|.$$

Determine when the equality holds.

Proof. Proceed by means of mathematical induction on $n \ge 1$:

- (a) If n = 1 then $|a_1| = |a_1|$, and if n = 2, then it follows from triangle inequality.
- (b) Suppose that the inequality holds for $n = 1, 2, \dots, k$, then we now prove the inequality holds for n = k + 1. Let a_i $(1 \le i \le k + 1)$ be in \mathbb{F} , then $|a_1 + a_2 + \dots + a_{k+1}| = |(a_1 + a_2 + \dots + a_k) + a_{k+1}| \le |a_1 + a_2 + \dots + a_k| + |a_{k+1}| \le (|a_1| + \dots + |a_k|) + |a_{k+1}|.$

And hence result follows from mathematical induction.

Return to the cases of equality, it holds if and only if the signs of a_1, a_2, \dots, a_n are all non-negative, or all all non-positive. We leave the proof as an exercise.

- 3. Let $S = \{a_1, a_2, \dots, a_n\}$ be a set of n elements in \mathbb{F} . Define $\max\{a_1, a_2, \dots, a_n\} = \max\{\max\{a_1, a_2, \dots, a_{n-1}\}, a_n\}$ for $n \geq 3$ inductively, and $\min S$ is defined similarly. Prove that $\max S$ and $\min S$ is independent of the choice of the ordering of the elements, i.e. $\max\{a_{\pi(1)}, a_{\pi(2)}, \dots, a_{\pi(n)}\} = \max\{a_1, a_2, \dots, a_n\}$, where π is a permutation of the index set $\{1, 2, \dots, n\}$, and similar equality for \min . **Proof.** Let $\pi : \{1, 2, \dots, n\} \rightarrow \{1, 2, \dots, n\}$ be a bijective mapping. Let $B_k = \max\{a_{\pi(1)}, a_{\pi(2)}, \dots, a_{\pi(k)}\}$, and $A_k = \max\{a_1, a_2, \dots, a_k\}$ for $1 \leq k \leq n$. Want to prove that $B_n = A_n$.
 - (a) By definition of max, we have $B_n \ge a_{\pi(n)}$ and $B_n \ge B_{n-1}$, and it must be equal to one of them. It follows from mathematical induction that $B_n \ge a_{\pi(i)}$ $(1 \le i \le n)$, and B_n must be equal to one of them, says $a_{\pi(I)}$.
 - (b) Similarly, we have $A_n \ge a_i$ $(1 \le i \le n)$, and A_n must be equal to one of them, says a_J . Then let K such that $\pi(K) = J$.

Then $A_n = a_J = a_{\pi(K)} \leq B_n$, and similarly, $B_n = a_{\pi(I)} \leq A_n$. Thus $A_n = B_n$.

4. Suppose that $b_i > 0$ ($i = 1, 2, \dots, n$), and $S = \{\frac{a_1}{b_1}, \frac{a_2}{b_2}, \dots, \frac{a_n}{b_n}\}$, prove, by means of mathematical induction on n, that

$$\min S \le \frac{a_1 + a_2 + \dots + a_n}{b_1 + b_2 + \dots + b_n} \le \max S.$$

Proof. Let max S = M, then we have $\frac{a_i}{b_i} \leq M$, and hence $a_i \leq b_i M$ $(i = 1, 2, \dots, n)$. Adding these inequalities (in fact it follows from mathematical induction on n, which we had omitted here), we have $a_1 + a_2 + \dots + a_n \leq (b_1 M + b_2 M + \dots + b_n M) = M \cdot (b_1 + b_2 + \dots + b_n)$. As $b_1 + b_2 + \dots + b_n > 0 + 0 + \dots + 0 = 0$, we have $\frac{a_1 + a_2 + \dots + a_n}{b_1 + b_2 + \dots + b_n} \leq M$. One can prove the similar result for min S.

- 5. (Supplementary Question). Let \mathbb{F} be an ordered field. Prove that (i) $x^2 + xy + y^2 \ge 0$ for any $x, y \in \mathbb{F}$; (ii) Equality holds if and only if x = y = 0. **Proof.** One can easily prove that 2 = 1 + 1 > 0, 3 = 2 + 1 > 0 + 0 = 0and 4 = 3 + 1 > 0 + 0 = 0. Moreover, we know that $z^2 \ge 0$ for all $z \in \mathbb{F}$. So we have $4(x^2 + xy + y^2) = (x + x + y)^2 + (y^2 + y^2 + y^2) \ge 0 + 0 = 0$. Then the result follows from 4 > 0 and division by 4. Equality holds if and only if $(2x + y)^2 = 0$ and $y^2 + y^2 + y^2 = 0$, which in turns are equivalent to x = y = 0.
- 6. (Supplementary Question). Prove that: if $a \neq 0$ and n is a positive integer, then $\underline{a + a + \dots + a} \neq 0$. **Proof.** It suffice to prove that $\underline{1 + 1 + \dots + 1} \neq 0$. We know that $1 \in P$, and it follows from the positivity is closed under addition and mathematical induction that $\underline{1 + 1 + \dots + 1} \in P$, and hence the sum is non-zero. **Remark.** Even though, we have not introduced natural numbers yet.