EDUC 250 Mathematical Analysis Solution of Homework IV Due: 22nd September, 2004. Hand in before the lecture starts at 9:00 a.m.

Let A, B be non-empty, bounded subset of an ordered field \mathbb{F} .

1. Prove that $\inf A \ge \inf B$ if $A \subset B$.

Proof. As $\inf B$ is an lower bound of B, we have $b \ge \inf B$ for all $b \in B$. Since $A \subset B$, then $a \ge \inf B$ for all $a \in A$. In particular, $\inf B$ is a lower bound of the set A. Finally, $\inf A$ is the greatest lower bound of A, so we have $\inf A \ge \inf B$.

2. Define $A + B = \{ a + b \in \mathbb{F} \mid a \in A, b \in B \}$. Prove that

$$\inf(A+B) \ge \inf A + \inf B.$$

Proof. As $\inf A \leq a$ and $\inf B \leq b$ for all $a \in A$ and $b \in B$, it follows that $\inf A + \inf B \leq a + b$. Hence by definition of A + B, we know that $\inf A + \inf B$ is a lower bound of A + B. By definition of \inf , we know that $\inf A + \inf B \leq \inf(A + B)$.

- 3. Define -A = { -x ∈ F | x ∈ A }. Prove that
 (i) sup(-A) = inf A, and (ii) inf(-A) = sup A.
 Proof. (ii) follows from (i) by replacing A by -A and that -(-A) = A.
 - (a) For any upper bound s of -A, we have $x \leq s$ for all $x \in -A$, it follows that $-x \in A$. Thus we have $-x \geq -s$, and so -s is a lower bound of A. Then by definition of inf, we know that $\inf A \geq -s$ for all upper bound s of -A. In particular, $\inf A \geq -\sup(-A)$, i.e. $-\inf A \leq \sup(-A)$.
 - (b) Now we will prove that − inf A ≥ sup(−A) : As inf A is a lower bound of A, we have inf A ≤ a for all a ∈ A. hence − inf A ≥ −a for all −a ∈ −A. In particular, − inf A is an upper bond of −A, and it follows from the definition of sup we have − inf A ≥ sup(−A).

- 4. (Supplementary problem).
 - (i) Prove that $\sup(A + (-A)) \ge 0$.
 - (ii) Determine when the equality holds.
 - (iii) How do you modify if you replace sup by inf.

Proof. (i) Since $A \neq \emptyset$, there exists $a \in A$, and hence $-a \in -A$. In particular, $0 = (a) + (-a) \in A + (-A)$, so $\sup A \ge 0$. (ii) $\sup(A + (-A)) = 0$ if and only if $A = \{a\}$ for some $a \in \mathbb{F}$. (\Leftarrow) If $A = \{a\}$, then $A + (-A) = \{0\}$, so $\sup(A + (-A)) = 0$. (\Rightarrow) Suppose contrary, then A contains at least two elements $a, b \in \mathbb{F}$ ($a \neq b$). Then $-a, -b \in -A$, so $a \pm b, b \pm a \in A + (-A)$. It follows from the definition of upper bound, we have $a \pm b \le 0$ and $b \pm a \le 0$. In particular, $a \le b$ and $b \le a$. In particular, a = b which violates the assumption that $a \neq b$.

(iii) It follows from $0 \in A + (-A)$ that $\inf(A + (-A)) \leq 0$. And $\inf(A + (-A)) = 0$ if and only if $A = \{a\}$. The proof follows from question 3, and -(A + (-A)) = A + (-A).