EDUC 250 Mathematical Analysis  Solution of Homework V
Due: 28th September, 2004. Hand in before the lecture starts at 9:00 a.m.

(a) If a > 0, prove that inf(aS) = ainf S and sup(aS) = asup S.
(b) If a < 0, prove that sup(aS) = ainf S and inf(aS) = asup S.

1. (Very Important) Prove that if ¢ > 0, then there exists n € N such that Proof I. We just give a proof of (a), and leave the proof (b) to you.

0<ic<e

Proof. For any ¢ > 0, then % > 0, then by Archimedean property, there
exists n € N such that (0 < )1 < n. Ase > 0and n > 0, after multiplying
€ 1 e 1 ¢

—>0wehave —=—. - < —-n=c¢.
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. Let S be a non-empty subset of R. Show that s = sup S if and only if the

following two conditions hold:

(a) for every positive integer n, s — 1/n is not an upper bound of S;

(b) for every positive integer n, s + 1/n is an upper bound of S.

Proof. (=) Suppose that s = sup S, then s is an upper bound of S,
in particular, s < s+ 1/n is also an upper bound of S for all n > 1.
Hence (b) holds. Now we will prove that (a) holds. For any n € N we
have % > 0, then it follows from equivalent definition of supremum that
T >8— % In particular, s — % is not an upper bound of S.

(<) Suppose that s satisfies the conditions (a) and (b).

(i) We first prove that s is an upper bound of S. Suppose contrary,
then there exists x € S such that z > s. It follows from question 1
that there exists % < x — s. In particular, x > s+ %, which violates
condition (b).

(i) We then prove that s = supS. For any ¢ > 0, it follows from

Archimedean property, there exists n € N such that 0 < %

Then by (a), we have s — % is not an upper bound of S, i.e. there

< €.

exists € S such that s—% < x. Hence we have s—e < s—% <z. It

follows from the equivalent definition of supremum that s = sup S.

3. Let 0 # S (C R) be bounded. Let aS ={as|s€ S } for any a € R.

(i) For any z € S we have z < sup S. Then multiplying by a, we have

ax < asup S for all x € S, hence asup S is an upper bound of aS.

(ii) For any € > 0, we have €/a > 0. Then by equivalent definition of
supremum, there exists € S such that z > sup S—e&/a. Multiplying
by a >0, a-z > a-supS — e. Consequently, sup(aS) = asup S.

(iii) Replacing A by —A, we have a - (—A) = —(a - A). Then the result
inf(aS) = ainf S follows from inf(—A) = —sup A.

Proof II. Assume that a > 0. (i) For any y € aS, there exists z € S
such that y = ax. By definition of supremum, we have y = ax < a-sup S.
Hence a-sup S is an upper bound of the set aS. By principle of Supremum,
sup(aS) exists in R. In particular, sup(aS) < asup S.

(ii) It remains to show that sup(aS) > asup S. It is easy to check that
(1/a) - (asup S) = S. By replacing S and a by aS and 1/a respectively.
Hence it follows from (i) that sup(S) = sup( (1/a)(aS) ) < (1/a)sup(asS).
In particular, sup(aS) > asup S.

. Let A and B be two non-empty, bounded subset of F. Prove that

sup(A + B) = sup A + sup B.

Hint: Instead of €, break it into two /2.

Proof. We had established sup(A+ B) < sup A+sup B in the class, and
hence we know that sup A + sup B is an upper bound of the set A + B.
It remains to show that sup A+ sup B is the least upper bound of the set
A + B. Then for any € > 0, there exist element a € A and b € B such
that the followings hold: a >sup A —¢/2, and b > sup B —¢/2.

Then the element x = a + b € A + B satisfies the following:



x=a+b>(supA—¢e/2)+ (supB —¢/2) = (sup A + sup B) — €. Then

the result follows from equivalent definition of sup.

. Let A and B be two non-empty, bounded subsets of an ordered field F,
define A-B={a-b|a€c Abe B }.

(a) Prove A - B is bounded;

(b) Prove that sup(A - B)
= max{ sup A -sup B, sup A -inf B, inf A-sup B, inf A -inf B }.

(c) If we replace "bounded” by ”bounded above”, is A - B bounded

above? Justify your answer.

Hint: For (b), in case of sup(A - B) = sup A - inf B one can consider

the following setup: For any ¢ > 0, there exists z € A and y € B such

that > sup A — ¢ and y > inf B + 9, where g1 = m and
€ 1
}.
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Proof. (a) Since A, B are bounded, by the supremum principle and

€9 = min{

similar version for infimum, all the infimum and supremum involved exist
inR,infA<a<supA,andinf B<b<supBforalla € Aandallb e B.
Then we have a-b < sup Asup B if a > 0 and b > 0. But if there are some
negative elements in either A or B, then one need to modify the direction
of the inequalities when we estimate the product ab with those bounds, so
we have ab < max{ sup A-sup B, sup A-inf B, inf A-sup B, inf A-inf B }.
It follows that A - B is bounded above. Similarly, one know that ab >
min{ sup A -sup B, sup A -inf B, inf A-sup B, inf A-inf B }.

(b) There are 4 cases depending on which one is max{ sup A-sup B, sup A-
inf B, inf A-sup B, inf A-inf B }. We only prove the case that sup A-inf B
is the largest among these four products, for example, B = {1,2} and
A ={-1,-2} then A- B = {—1,—2,—4}. Hence sup(A - B) = —1 and
supA-inf B=(-1)-1=-1.

e Assup A-inf B > sup A -sup B, we have sup A (sup B —inf B) < 0.
Similarly, it follows from sup A - inf B > inf A - inf B, we know that
inf B - (sup A —inf A) > 0.

e Without loss of generality, we may assume that sup B > inf B and
sup A > inf A otherwise B = {b} or A = {a} for some a,b € R.

Then the resulting equality easily follows from question 2.

e It follows that sup A < 0, and that inf B > 0. Hence a < 0 for all
a€ A and 0 <inf B<bforall be B.

After multiplying b > inf B by a, we have ab < sup A - inf B. Hence
sup A - inf B is an upper bound of the set A - B.

e It remains to show that sup 4 - inf B = sup(A - B).
For any ¢ > 0, there exists + € A and y € B such that x >

supA — &1 and y < inf B + €9, where ¢; = m and
1
€9 = min{ m, 5 }. Then it follows from x < 0 and

inf B> 0 that x-y >z - (inf B + &9)
> (supA —€1) - (inf B + €3)
=supA-inf B+ (supA-ey —inf B-e1) — 169

. —|sup A] |inf B| 1
> sup A - inf B e )
= Sup A +<2(|supA\+1) CT3(mtB| 1) °) %6

g 15 13
> A-infB—-—-——
>sup A -in 57376

=supA-inf B —e.

Consequently, sup A - inf B = sup(A - B).

Remark. It is easier to separate the set A into 2 parts: A = Ay UA_,
where A, ={a€ A|a>0}and A_ ={a € A|a<0}. Define By and
B_ similarly. If any of these subsets are empty, we don’t need to write

them down in the following.

Then it remains to show that
A-B= (A4 -By)U(Ay-B_)U(A_-By)U(A_-B_). And It follows that



sup(A - B) = max{ sup(A4By),sup(A4+B_),sup(A_By),sup(4_B_) }

= max{ sup(A4 ) sup(By;), sup(A44 ) inf(B_), sup(A_B), inf(A_)inf(B_) }.

0<infA;y <z <supA; forallz € A;, and inf B_ <y <supB_ <0
for all y € B_. Hence we have 0 > zy > ysup A4 > inf B_sup A, and
xy <yinf Ay <supB_inf A;. Thus sup(4; - B_) <inf A, sup B_.

It remains to show that sup(Ay - B_) = inf A4 sup B_.

Choose any positive number M > 1 such that |inf Ay| < M/2, and
|sup B_| < M/2. For any given ¢ > 0 there exist x € A} and y € B_
such that < inf A, +¢&1/M and y > sup B_ —e3/M, where ¢; (i = 1,2)

are to be chosen later.

Since x > 0 and y < 0, Then z-y
>z - (sup B- — /M)

> (inf Ay +e1/M) - (sup B_ — ea/M)

. | sup B_| inf A4 €162
=inf A, supB_ — T VP
> ian+ sup B_ — 551 — 552 — £1€9
. 1 1 ¢ 1 .
>infA supB_. ——e——---—¢--=inf A supB_ —e.
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In the last step, we had chosen £; = ¢ and €3 = min{1,¢}/3.
(¢) The result (a) does not hold if we replace "bounded” by ”bounded
above”. Let A = B = (—00,0), then A- B = (0,+00) which is not

bounded above.

Study these solution carefully.



