
EDUC 250 Mathematical Analysis Solution of Homework V

Due: 28th September, 2004. Hand in before the lecture starts at 9:00 a.m.

1. (Very Important) Prove that if ε > 0, then there exists n ∈ N such that

0 < 1
n < ε.

Proof. For any ε > 0, then 1
ε > 0, then by Archimedean property, there

exists n ∈ N such that ( 0 < )1
ε < n. As ε > 0 and n > 0, after multiplying

ε

n
> 0 we have

1
n

=
ε

n
· 1
ε

<
ε

n
· n = ε.

2. Let S be a non-empty subset of R. Show that s = supS if and only if the

following two conditions hold:

(a) for every positive integer n, s− 1/n is not an upper bound of S;

(b) for every positive integer n, s + 1/n is an upper bound of S.

Proof. (⇒) Suppose that s = sup S, then s is an upper bound of S,

in particular, s ≤ s + 1/n is also an upper bound of S for all n ≥ 1.

Hence (b) holds. Now we will prove that (a) holds. For any n ∈ N we

have 1
n > 0, then it follows from equivalent definition of supremum that

x > s− 1
n . In particular, s− 1

n is not an upper bound of S.

(⇐) Suppose that s satisfies the conditions (a) and (b).

(i) We first prove that s is an upper bound of S. Suppose contrary,

then there exists x ∈ S such that x > s. It follows from question 1

that there exists 1
n < x− s. In particular, x > s + 1

n , which violates

condition (b).

(ii) We then prove that s = supS. For any ε > 0, it follows from

Archimedean property, there exists n ∈ N such that 0 < 1
n < ε.

Then by (a), we have s − 1
n is not an upper bound of S, i.e. there

exists x ∈ S such that s− 1
n < x. Hence we have s−ε < s− 1

n < x. It

follows from the equivalent definition of supremum that s = supS.

3. Let ∅ 6= S (⊂ R) be bounded. Let aS = { as | s ∈ S } for any a ∈ R.

(a) If a > 0, prove that inf(aS) = a inf S and sup(aS) = a supS.

(b) If a < 0, prove that sup(aS) = a inf S and inf(aS) = a supS.

Proof I. We just give a proof of (a), and leave the proof (b) to you.

(i) For any x ∈ S we have x ≤ supS. Then multiplying by a, we have

ax ≤ a supS for all x ∈ S, hence a supS is an upper bound of aS.

(ii) For any ε > 0, we have ε/a > 0. Then by equivalent definition of

supremum, there exists x ∈ S such that x > supS−ε/a. Multiplying

by a > 0, a · x > a · supS − ε. Consequently, sup(aS) = a supS.

(iii) Replacing A by −A, we have a · (−A) = −(a · A). Then the result

inf(aS) = a inf S follows from inf(−A) = − supA.

Proof II. Assume that a > 0. (i) For any y ∈ aS, there exists x ∈ S

such that y = ax. By definition of supremum, we have y = ax ≤ a · supS.

Hence a·supS is an upper bound of the set aS. By principle of Supremum,

sup(aS) exists in R. In particular, sup(aS) ≤ a supS.

(ii) It remains to show that sup(aS) ≥ a supS. It is easy to check that

(1/a) · (a supS) = S. By replacing S and a by aS and 1/a respectively.

Hence it follows from (i) that sup(S) = sup( (1/a)(aS) ) ≤ (1/a) sup(aS).

In particular, sup(aS) ≥ a supS.

4. Let A and B be two non-empty, bounded subset of F. Prove that

sup(A + B) = supA + supB.

Hint: Instead of ε, break it into two ε/2.

Proof. We had established sup(A+B) ≤ supA+supB in the class, and

hence we know that supA + supB is an upper bound of the set A + B.

It remains to show that supA+supB is the least upper bound of the set

A + B. Then for any ε > 0, there exist element a ∈ A and b ∈ B such

that the followings hold: a ≥ supA− ε/2, and b ≥ supB − ε/2.

Then the element x = a + b ∈ A + B satisfies the following:



x = a + b ≥ (supA − ε/2) + (supB − ε/2) = (supA + supB) − ε. Then

the result follows from equivalent definition of sup.

5. Let A and B be two non-empty, bounded subsets of an ordered field F,
define A ·B = {a · b | a ∈ A, b ∈ B }.

(a) Prove A ·B is bounded;

(b) Prove that sup(A ·B)

= max{ supA · supB, supA · inf B, inf A · supB, inf A · inf B }.
(c) If we replace ”bounded” by ”bounded above”, is A · B bounded

above? Justify your answer.

Hint: For (b), in case of sup(A · B) = supA · inf B one can consider

the following setup: For any ε > 0, there exists x ∈ A and y ∈ B such

that x ≥ supA − ε1 and y ≥ inf B + ε2, where ε1 =
ε

2(| inf B|+ 1)
and

ε2 = min{ ε

3(| supA|+ 1)
,

1
6
}.

Proof. (a) Since A, B are bounded, by the supremum principle and

similar version for infimum, all the infimum and supremum involved exist

in R, inf A ≤ a ≤ supA, and inf B ≤ b ≤ supB for all a ∈ A and all b ∈ B.

Then we have a ·b ≤ supA supB if a ≥ 0 and b ≥ 0. But if there are some

negative elements in either A or B, then one need to modify the direction

of the inequalities when we estimate the product ab with those bounds, so

we have ab ≤ max{ supA·supB, supA·inf B, inf A·supB, inf A·inf B }.
It follows that A · B is bounded above. Similarly, one know that ab ≥
min{ supA · supB, supA · inf B, inf A · supB, inf A · inf B }.
(b) There are 4 cases depending on which one is max{ supA·supB, supA·
inf B, inf A·supB, inf A·inf B }. We only prove the case that supA·inf B

is the largest among these four products, for example, B = {1, 2} and

A = {−1,−2} then A · B = {−1,−2,−4}. Hence sup(A · B) = −1 and

supA · inf B = (−1) · 1 = −1.

• As supA · inf B ≥ supA · supB, we have supA · (supB− inf B) ≤ 0.

Similarly, it follows from supA · inf B ≥ inf A · inf B, we know that

inf B · (supA− inf A) ≥ 0.

• Without loss of generality, we may assume that supB > inf B and

supA > inf A otherwise B = {b} or A = {a} for some a, b ∈ R.

Then the resulting equality easily follows from question 2.

• It follows that supA ≤ 0, and that inf B ≥ 0. Hence a ≤ 0 for all

a ∈ A, and 0 ≤ inf B ≤ b for all b ∈ B.

After multiplying b ≥ inf B by a, we have ab ≤ supA · inf B. Hence

supA · inf B is an upper bound of the set A ·B.

• It remains to show that supA · inf B = sup(A ·B).

For any ε > 0, there exists x ∈ A and y ∈ B such that x ≥
supA − ε1 and y ≤ inf B + ε2, where ε1 =

ε

2(| inf B|+ 1)
and

ε2 = min{ ε

3(| supA|+ 1)
,

1
6
}. Then it follows from x ≤ 0 and

inf B ≥ 0 that x · y ≥ x · (inf B + ε2)

≥ (supA− ε1) · (inf B + ε2)

= supA · inf B + (supA · ε2 − inf B · ε1)− ε1ε2

≥ supA · inf B +
( −| supA|

2(| supA|+ 1)
· ε− | inf B|

3(| inf B|+ 1)
· ε

)
− ε · 1

6
≥ supA · inf B − ε

2
− ε

3
− ε

6
= supA · inf B − ε.

Consequently, supA · inf B = sup(A ·B).

Remark. It is easier to separate the set A into 2 parts: A = A+ ∪ A−,

where A+ = { a ∈ A | a ≥ 0} and A− = { a ∈ A | a < 0}. Define B+ and

B− similarly. If any of these subsets are empty, we don’t need to write

them down in the following.

Then it remains to show that

A ·B = (A+ ·B+)∪ (A+ ·B−)∪ (A− ·B+)∪ (A− ·B−). And It follows that



sup(A ·B) = max{ sup(A+B+), sup(A+B−), sup(A−B+), sup(A−B−) }
= max{ sup(A+) sup(B+), sup(A+) inf(B−), sup(A−B+), inf(A−) inf(B−) }.

0 ≤ inf A+ ≤ x ≤ supA+ for all x ∈ A+, and inf B− ≤ y ≤ supB− ≤ 0

for all y ∈ B−. Hence we have 0 ≥ xy ≥ y supA+ ≥ inf B− supA+, and

xy ≤ y inf A+ ≤ supB− inf A+. Thus sup(A+ ·B−) ≤ inf A+ supB−.

It remains to show that sup(A+ ·B−) = inf A+ supB−.

Choose any positive number M > 1 such that | inf A+| ≤ M/2, and

| supB−| ≤ M/2. For any given ε > 0 there exist x ∈ A+ and y ∈ B−
such that x < inf A+ + ε1/M and y > supB−− ε2/M, where εi (i = 1, 2)

are to be chosen later.

Since x ≥ 0 and y < 0, Then x · y
≥ x · (supB− − ε2/M)

> (inf A+ + ε1/M) · (supB− − ε2/M)

= inf A+ supB− − | supB−|
M

ε1 − inf A+

M
ε2 − ε1ε2

M2

> inf A+ supB− − 1
2
ε1 − 1

2
ε2 − ε1ε2

≥ inf A+ supB− − 1
2
ε− 1

2
· ε

3
− ε · 1

3
= inf A+ supB− − ε.

In the last step, we had chosen ε1 = ε and ε2 = min{1, ε}/3.

(c) The result (a) does not hold if we replace ”bounded” by ”bounded

above”. Let A = B = (−∞, 0), then A · B = (0,+∞) which is not

bounded above.

Study these solution carefully.


