EDUC 250 Mathematical Analysis Solution of Homework V

Due: 28th September, 2004. Hand in before the lecture starts at 9:00 a.m.

1. (Very Important) Prove that if $\varepsilon > 0$, then there exists $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < \varepsilon$.

Proof. For any $\varepsilon > 0$, then $\frac{1}{\varepsilon} > 0$, then by Archimedean property, there exists $n \in \mathbb{N}$ such that $(0 <)\frac{1}{\varepsilon} < n$. As $\varepsilon > 0$ and n > 0, after multiplying $\frac{\varepsilon}{n} > 0$ we have $\frac{1}{n} = \frac{\varepsilon}{n} \cdot \frac{1}{\varepsilon} < \frac{\varepsilon}{n} \cdot n = \varepsilon$.

- 2. Let S be a non-empty subset of \mathbb{R} . Show that $s = \sup S$ if and only if the following two conditions hold:
 - (a) for every positive integer n, s 1/n is not an upper bound of S;
 - (b) for every positive integer n, s + 1/n is an upper bound of S.

Proof. (\Rightarrow) Suppose that $s = \sup S$, then s is an upper bound of S, in particular, $s \leq s + 1/n$ is also an upper bound of S for all $n \geq 1$. Hence (b) holds. Now we will prove that (a) holds. For any $n \in \mathbb{N}$ we have $\frac{1}{n} > 0$, then it follows from equivalent definition of supremum that $x > s - \frac{1}{n}$. In particular, $s - \frac{1}{n}$ is not an upper bound of S. (\Leftarrow) Suppose that s satisfies the conditions (a) and (b).

- (i) We first prove that s is an upper bound of S. Suppose contrary, then there exists $x \in S$ such that x > s. It follows from question 1 that there exists $\frac{1}{n} < x - s$. In particular, $x > s + \frac{1}{n}$, which violates condition (b).
- (ii) We then prove that $s = \sup S$. For any $\varepsilon > 0$, it follows from Archimedean property, there exists $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < \varepsilon$. Then by (a), we have $s - \frac{1}{n}$ is not an upper bound of S, i.e. there exists $x \in S$ such that $s - \frac{1}{n} < x$. Hence we have $s - \varepsilon < s - \frac{1}{n} < x$. It follows from the equivalent definition of supremum that $s = \sup S$.
- 3. Let $\emptyset \neq S \ (\subset \mathbb{R})$ be bounded. Let $aS = \{ as \mid s \in S \}$ for any $a \in \mathbb{R}$.

- (a) If a > 0, prove that $\inf(aS) = a \inf S$ and $\sup(aS) = a \sup S$.
- (b) If a < 0, prove that $\sup(aS) = a \inf S$ and $\inf(aS) = a \sup S$.

Proof I. We just give a proof of (a), and leave the proof (b) to you.

- (i) For any $x \in S$ we have $x \leq \sup S$. Then multiplying by a, we have $ax \leq a \sup S$ for all $x \in S$, hence $a \sup S$ is an upper bound of aS.
- (ii) For any ε > 0, we have ε/a > 0. Then by equivalent definition of supremum, there exists x ∈ S such that x > sup S ε/a. Multiplying by a > 0, a ⋅ x > a ⋅ sup S ε. Consequently, sup(aS) = a sup S.
- (iii) Replacing A by -A, we have $a \cdot (-A) = -(a \cdot A)$. Then the result $\inf(aS) = a \inf S$ follows from $\inf(-A) = -\sup A$.

Proof II. Assume that a > 0. (i) For any $y \in aS$, there exists $x \in S$ such that y = ax. By definition of supremum, we have $y = ax \leq a \cdot \sup S$. Hence $a \cdot \sup S$ is an upper bound of the set aS. By principle of Supremum, $\sup(aS)$ exists in \mathbb{R} . In particular, $\sup(aS) \leq a \sup S$.

(ii) It remains to show that $\sup(aS) \ge a \sup S$. It is easy to check that $(1/a) \cdot (a \sup S) = S$. By replacing S and a by aS and 1/a respectively. Hence it follows from (i) that $\sup(S) = \sup((1/a)(aS)) \le (1/a) \sup(aS)$. In particular, $\sup(aS) \ge a \sup S$.

4. Let A and B be two non-empty, bounded subset of \mathbb{F} . Prove that $\sup(A+B) = \sup A + \sup B.$

Hint: Instead of ε , break it into two $\varepsilon/2$.

Proof. We had established $\sup(A + B) \leq \sup A + \sup B$ in the class, and hence we know that $\sup A + \sup B$ is an upper bound of the set A + B. It remains to show that $\sup A + \sup B$ is the least upper bound of the set A + B. Then for any $\varepsilon > 0$, there exist element $a \in A$ and $b \in B$ such that the followings hold: $a \geq \sup A - \varepsilon/2$, and $b \geq \sup B - \varepsilon/2$. Then the element $x = a + b \in A + B$ satisfies the following:

- $x = a + b \ge (\sup A \varepsilon/2) + (\sup B \varepsilon/2) = (\sup A + \sup B) \varepsilon$. Then the result follows from equivalent definition of sup.
- 5. Let A and B be two non-empty, bounded subsets of an ordered field \mathbb{F} , define $A \cdot B = \{a \cdot b \mid a \in A, b \in B \}$.
 - (a) Prove $A \cdot B$ is bounded;
 - (b) Prove that $\sup(A \cdot B)$ = max{ $\sup A \cdot \sup B$, $\sup A \cdot \inf B$, $\inf A \cdot \sup B$, $\inf A \cdot \inf B$ }.
 - (c) If we replace "bounded" by "bounded above", is $A \cdot B$ bounded above? Justify your answer.

Hint: For (b), in case of $\sup(A \cdot B) = \sup A \cdot \inf B$ one can consider the following setup: For any $\varepsilon > 0$, there exists $x \in A$ and $y \in B$ such that $x \ge \sup A - \varepsilon_1$ and $y \ge \inf B + \varepsilon_2$, where $\varepsilon_1 = \frac{\varepsilon}{2(|\inf B| + 1)}$ and $\varepsilon_2 = \min\{\frac{\varepsilon}{3(|\sup A| + 1)}, \frac{1}{6}\}.$

Proof. (a) Since A, B are bounded, by the supremum principle and similar version for infimum, all the infimum and supremum involved exist in \mathbb{R} , $\inf A \leq a \leq \sup A$, and $\inf B \leq b \leq \sup B$ for all $a \in A$ and all $b \in B$. Then we have $a \cdot b \leq \sup A \sup B$ if $a \geq 0$ and $b \geq 0$. But if there are some negative elements in either A or B, then one need to modify the direction of the inequalities when we estimate the product ab with those bounds, so we have $ab \leq \max\{\sup A \cdot \sup B, \sup A \cdot \inf B, \inf A \cdot \sup B, \inf A \cdot \inf B\}$. It follows that $A \cdot B$ is bounded above. Similarly, one know that $ab \geq$ $\min\{\sup A \cdot \sup B, \sup A \cdot \inf B, \inf A \cdot \sup B, \inf A \cdot \inf B\}$.

(b) There are 4 cases depending on which one is max{ sup A·sup B, sup A· inf B, inf A·sup B, inf A·inf B}. We only prove the case that sup A·inf Bis the largest among these four products, for example, $B = \{1, 2\}$ and $A = \{-1, -2\}$ then $A \cdot B = \{-1, -2, -4\}$. Hence sup $(A \cdot B) = -1$ and sup $A \cdot \inf B = (-1) \cdot 1 = -1$.

- As sup A · inf B ≥ sup A · sup B, we have sup A · (sup B − inf B) ≤ 0.
 Similarly, it follows from sup A · inf B ≥ inf A · inf B, we know that inf B · (sup A − inf A) ≥ 0.
- Without loss of generality, we may assume that sup B > inf B and sup A > inf A otherwise B = {b} or A = {a} for some a, b ∈ ℝ. Then the resulting equality easily follows from question 2.
- It follows that $\sup A \leq 0$, and that $\inf B \geq 0$. Hence $a \leq 0$ for all $a \in A$, and $0 \leq \inf B \leq b$ for all $b \in B$.

After multiplying $b \ge \inf B$ by a, we have $ab \le \sup A \cdot \inf B$. Hence $\sup A \cdot \inf B$ is an upper bound of the set $A \cdot B$.

• It remains to show that $\sup A \cdot \inf B = \sup(A \cdot B)$. For any $\varepsilon > 0$, there exists $x \in A$ and $y \in B$ such that $x \ge \sup A - \varepsilon_1$ and $y \le \inf B + \varepsilon_2$, where $\varepsilon_1 = \frac{\varepsilon}{2(|\inf B| + 1)}$ and $\varepsilon_2 = \min\{\frac{\varepsilon}{3(|\sup A| + 1)}, \frac{1}{6}\}$. Then it follows from $x \le 0$ and $\inf B \ge 0$ that $x \cdot y \ge x \cdot (\inf B + \varepsilon_2)$ $\ge (\sup A - \varepsilon_1) \cdot (\inf B + \varepsilon_2)$ $= \sup A \cdot \inf B + (\sup A \cdot \varepsilon_2 - \inf B \cdot \varepsilon_1) - \varepsilon_1 \varepsilon_2$ $\ge \sup A \cdot \inf B + \left(\frac{-|\sup A|}{2(|\sup A| + 1)} \cdot \varepsilon - \frac{|\inf B|}{3(|\inf B| + 1)} \cdot \varepsilon\right) - \varepsilon \cdot \frac{1}{6}$ $\ge \sup A \cdot \inf B - \frac{\varepsilon}{2} - \frac{\varepsilon}{3} - \frac{\varepsilon}{6}$ $= \sup A \cdot \inf B - \varepsilon.$

Consequently, $\sup A \cdot \inf B = \sup(A \cdot B)$.

Remark. It is easier to separate the set A into 2 parts: $A = A_+ \cup A_-$, where $A_+ = \{ a \in A \mid a \ge 0 \}$ and $A_- = \{ a \in A \mid a < 0 \}$. Define B_+ and B_- similarly. If any of these subsets are empty, we don't need to write them down in the following.

Then it remains to show that

 $A \cdot B = (A_+ \cdot B_+) \cup (A_+ \cdot B_-) \cup (A_- \cdot B_+) \cup (A_- \cdot B_-)$. And It follows that

 $\sup(A \cdot B) = \max\{ \sup(A_+B_+), \sup(A_+B_-), \sup(A_-B_+), \sup(A_-B_-) \}$ = max{ sup(A_+) sup(B_+), sup(A_+) inf(B_-), sup(A_-B_+), inf(A_-) inf(B_-) }.

 $0 \leq \inf A_+ \leq x \leq \sup A_+$ for all $x \in A_+$, and $\inf B_- \leq y \leq \sup B_- \leq 0$ for all $y \in B_-$. Hence we have $0 \geq xy \geq y \sup A_+ \geq \inf B_- \sup A_+$, and $xy \leq y \inf A_+ \leq \sup B_- \inf A_+$. Thus $\sup(A_+ \cdot B_-) \leq \inf A_+ \sup B_-$. It remains to show that $\sup(A_+ \cdot B_-) = \inf A_+ \sup B_-$.

Choose any positive number M > 1 such that $|\inf A_+| \leq M/2$, and $|\sup B_-| \leq M/2$. For any given $\varepsilon > 0$ there exist $x \in A_+$ and $y \in B_-$ such that $x < \inf A_+ + \varepsilon_1/M$ and $y > \sup B_- - \varepsilon_2/M$, where ε_i (i = 1, 2) are to be chosen later.

Since $x \ge 0$ and y < 0, Then $x \cdot y$ $\ge x \cdot (\sup B_- - \varepsilon_2/M)$ $> (\inf A_+ + \varepsilon_1/M) \cdot (\sup B_- - \varepsilon_2/M)$ $= \inf A_+ \sup B_- - \frac{|\sup B_-|}{M} \varepsilon_1 - \frac{\inf A_+}{M} \varepsilon_2 - \frac{\varepsilon_1 \varepsilon_2}{M^2}$ $> \inf A_+ \sup B_- - \frac{1}{2} \varepsilon_1 - \frac{1}{2} \varepsilon_2 - \varepsilon_1 \varepsilon_2$ $\ge \inf A_+ \sup B_- - \frac{1}{2} \varepsilon - \frac{1}{2} \cdot \frac{\varepsilon}{3} - \varepsilon \cdot \frac{1}{3} = \inf A_+ \sup B_- - \varepsilon.$ In the last step, we had chosen $\varepsilon_1 = \varepsilon$ and $\varepsilon_2 = \min\{1, \varepsilon\}/3$.

(c) The result (a) does not hold if we replace "bounded" by "bounded above". Let $A = B = (-\infty, 0)$, then $A \cdot B = (0, +\infty)$ which is **not** bounded above.

Study these solution carefully.