
2. Definition. Given a, b ∈ F, define a < b if b − a ∈ P. In this case, < is

a relation on the set F. An element x ∈ F is called positive (negative), if

x ∈ P ( x ∈ −P ) respectively.

3. We also write x > y to represent y < x, and we write x ≤ y ⇐⇒ (x = y)

or (x < y). Similarly, x ≥ y ⇐⇒ (x = y) or (y < x). One can easily

write down the analogy inequalities with ≤ instead of < .

3.4 Properties of Inequalities

For all x, y, z ∈ F, we have

I-1 Transitivity: If x < y and y < z, then x < z.

Proof. (x < y) ∧ (y < z) ⇐⇒ (y− x ∈ P ) ∧ (z− y ∈ P ) =⇒ z− x =

(z − y) + (y − x) ∈ P ⇐⇒ x < z.

I-2 Trichotomy: Exactly one of the following holds: x < y, x = y, x > y.

I-3 If x < y, then x + z < y + z, for all z ∈ F.
Proof. x < y ⇐⇒ 0 < y − x = (y + z)− (x + z) ⇐⇒ x + z < y + z.

It follows that x + z < y + z is equivalent x < y.

I-4 (i) If x < y and z > 0 then x · z < y · z.

(ii) If x < y and z < 0 then x · z > y · z.

Proof. (i) We know that y − x ∈ P and z ∈ P then

z · y − (z · y) = z · (y − x) ∈ P. This means that z · x < z · y.

(ii) As z < 0, then −z = 0+(−z) ∈ P. So −y ·z+x ·z = (y−x) ·(−z) ∈ P,

hence x · z > y · z.

I-5 (i) 1 > 0 and −1 < 0.

Proof I. As F has more than 1 element, so 1 6= 0. Then 1 ∈ P or 1 ∈
−P ( ⇐⇒ − 1 ∈ P ). It follows from 1 = 1 · 1 = (−1) · (−1) that 1 ∈ P.

Proof II. Since 1 6= 0, we have only one the following holds: 1 ∈ P and

1 ∈ −P. If 1 ∈ −P, then −1 ∈ P. And if follows that 1 = (−1) · (−1) ∈ P

which contradicts to our assumption 1 ∈ −P.

I-6 If x > 0, then 1/x > 0.

Proof. Assume contrary, then 1/x ≤ 0. If 1/x = 0, then 1 = 0 · x = 0,

which is impossible, and hence 1/x < 0. Then it follows from x > 0, we

have 1 = x · (1/x) < x · 0 = 0, which contradicts to I-5.

I-7 If 0 < x < y, then 0 < 1/y < 1/x.

Proof. From the given conditions 0 < x < y, we know that
1
x

> 0,
1
y

> 0

and y− x < 0. So we have
1
yx

=
1
y
· 1
x

> 0 and (y− x) · 1
yx

< 0 · 1
yx

= 0.

So
1
x
− 1

y
=

y − x

xy
= (y − x) · 1

xy
< 0.

I-8 If z > 0 and x · z < y · z, then x < y.

Proof. x = (x · z) · 1
z

< (y · z) · 1
z

= y.

Notations. In the following, suppose that a, b, x and y are elements of an

ordered field F, and a < b. We define notions similar to those of intervals in

the field R of real numbers.

1. Define Ua = { y ∈ F | a < y } and Lb = { x ∈ F | x < b }. likewise,

(a, b) = Ua ∩ Lb, [a, b) = {a} ∪ (a, b), and (a, b] = (a, b) ∪ {b}.
x ∈ (a, b) ⇐⇒ (x ∈ Lb) and (x ∈ Ua) ⇐⇒ (a < x < b).

2. Suppose that F is the real number field R and a < b. Denote the open

interval by (a, b) = { x ∈ R | a < x < b } and the closed interval

[a, b] = { x ∈ R | a ≤ x ≤ b }. There are some other intervals which may

be useful too, such as: (a, b] = { x ∈ R | a < x ≤ b } and [a, b) = { x ∈
R | a ≤ x < b }. Moreover, one can also relax the finiteness of a or b, then

we have the unbounded intervals as follows: (−∞, b] = {x ∈ R | x ≤ b }
and (a, +∞) = {x ∈ R | a ≤ x }.



3. Though open and closed intervals are simple objects as sets, but they

play vital role in the real analysis, as soon as we discuss the concept of

limit.

3.5 Absolute Value

1. Let F be an ordered field, define absolute value map | · | : F→ F as follows:

|a| =




a if a > 0 or a = 0;

−a if a < 0
.

2. If a, b ∈ F and b ≥ 0, then |a| ≤ b if and only if −b ≤ a ≤ b.

3. For all x and y in an ordered field F, we have

(a) |x| ≥ 0, and that |x| = 0 ⇐⇒ x = 0.

(b) |x| = | − x|;
(c) −|x| ≤ x ≤ |x|.
(d) |xy| = |x| · |y|;
(e) |x + y| ≤ |x|+ |y|;
(f) | |x| − |y| | ≤ |x− y|.

Proof.

(a) If x ≥ 0, then |x| = x ≥ 0; otherwise, x < 0, then |x| = −x =

(−1) · x > (−1) · 0 = 0. The second part follows from trichotomy.

(b) If x is positive, then |x| = x , then |x| ≥ x holds.

If x is negative, i.e. x < 0, then after multiplying by (−1) we have

|x| = −x = (−1) · x > (−1) · 0 = 0 > x. In particular, |x| ≥ x.

And the second inequality follows by replacing x by −x.

(c) Divide into 3 cases according x is positive, zero and negative. If x

is positive, then −x is negative, so | − x| = −(−x) = x = |x|. If x is

negative, then −x is positive, then | − x| = −x = |x|. If x = 0, then

−x = 0, and so |x| = 0 = | − x|.

(d) If one of x and y is zero, then it is obvious. With loss of generality

(WLOG), we may assume that both x and y are not zero. According

to trichotomy, We have 3 cases:

(i) Both x and y are positive, then xy > 0, |x| = x, |y| = y. In this

case |xy| = xy = |x| · |y|.

(ii) Both of them are negative, then both −x and −y are positive,

and x·y = (−x)·(−y). Hence |x·y| = |(−x)·(−y)| = |−x|·|−y| =
|x| · |y|.

(iii) If x and y have different signs, then it follows from x · y =

−( (−x) · y ) = −( x · (−y) ) that x · y < 0, so |x · y| = −(x · y).

Moreover, because only one of |x| and |y| has a sign different

from that x and y, so |x| · |y| = −(x · y). And the result follows.

(e) Consider the sign of sum x + y:

(i) If x + y > 0 then |x + y| = x + y ≤ |x|+ |y|;
(ii) If x + y < 0 then |x + y| = −(x + y) = (−x) + (−y) ≤ |x|+ |y|;
(iii) If x + y = 0 then |x + y| = |0| = 0 = 0 + 0 ≤ |x|+ |y|.
Remark. Determine when the equality holds.

(f) | |x| − |y| | ≤ |x− y| ⇐⇒ − (|x− y|) ≤ |x| − |y| ≤ |x− y|
⇐⇒ ( |y| ≤ |x|+ |x− y| ) ∧ ( |x| ≤ |x− y|+ |y| ) .

The first inequality follows from (e) that |y| = | − y| = |(−x) + (x−
y)| ≤ |−x|+ |x−y| = |x|+ |x−y|, and the second inequality follows

from (e) that |x| = |y + (x− y)| ≤ |y|+ |x− y|.


