
3.6 Dedekind Completeness Axiom and Supremum Principle

1. Dedekind Completeness Axiom. An ordered field F is said to sat-

isfy Dedekind Completness Axiom (DAC), if for any non-empty partition

{A,B} of F such that a < b for any a ∈ A, b ∈ B, then there exists

exactly one s ∈ F such that

(i) If u ∈ F and u < s then u ∈ A, and

(ii) if v ∈ F and s < v then v ∈ B.

2. Definition. Let S be a non-empty subset of an ordered field F,
(i) a number b is called an upper bound of S if x ≤ b for all x ∈ S, and

(ii) a number c is called an lower bound of S if c ≤ x for all x ∈ S.

3. Definition. If S ⊂ F has an upper bound ( a lower bound ) in F respec-

tively, then S is called bounded above (bounded below) respectively. If S

is called bounded, if S has both an upper bound and a lower bound.

Remark. A subset S of F is not bounded above, if for any element a ∈ F,
there exists some x ∈ S such that x ≤ s.

4. Definition. Let S be a subset of an ordered field F. An element s ∈ F is

called the supremum or least upper bound of S if these two hold:

(i) s is an upper bound of S;

(ii) if b is an upper bound of S, then s ≤ b.

5. Example. Let A = {x ∈ Q | x ≥ 0, and x2 < 2}. Prove that (i) A is

bounded subset of R; (ii) supA =
√

2.

Proof. (i) For any x ∈ A, we have x+2 ≥ 0+2 > 0, and (x−2)(x+2) =

x2− 4 < 2− 4 < 0. It follows from that x− 2 < 0 i.e. x < 2 for all x ∈ A,

and the set A is bounded in R.

(ii) For any x ∈ A, we have x2 < (
√

2)2, and −√2 < x <
√

2. So
√

2

is an upper bound of A. Let t be any upper bound of A. Want to prove

that t ≥ √
2. Assume contrary, that t <

√
2. As 1 ∈ A, so t > 1 > 0.

In this case, t2 < (
√

2)2 = 2. Define ρ = min{2− t2

2t + 1
, 1}, so ρ > 0 and

let a = t + ρ. It follows from 0 < ρ < 1 that −ρ > −1 and −ρ2 > −ρ.

Consequently, 2−a2 = 2− (t+ρ)2 = 2− t2−2tρ−ρ2 = 2− t2−2tρ−ρ

> (2− t2)− ρ(2t + 1) ≥ (2− t2)− 2− t2

2t + 1
(2t + 1) = 0.

In particular, a2 < 2, and a ∈ A. Since ρ > 0 we have a > t, violating

that t is an upper bound of A. Hence supA =
√

2.

6. Example. Let A and B be two non-empty, bounded subset of F.

Define A + B = { a + b ∈ F | a ∈ A, b ∈ B }. Prove that

(i) supA ≤ supB if A ⊂ B, (ii) A + B is bounded, and

(iii) sup(A + B) ≤ supA + sup B.

Proof. (i) For any x ∈ A, we know that x ∈ B, and hence x ≤ supB,

i.e. supB is also an upper bound of A. By (ii) in the definition of sup,

supA ≤ supB.

(ii) Let u, l be any upper and lower bound of A respectively, i.e. l ≤ a ≤ u

for all a ∈ A. Similarly, define u′, l′ for B, then l′ ≤ b ≤ u′ for all b ∈ B. In

particular, l + l′ ≤ l + b ≤ a+ b ≤ u+ b ≤ u+u′, for all a ∈ A and b ∈ B.

So l + l′ and u + u′ are lower and upper bounds of A + B respectively.

Thus A + B is bounded.

(iii) As in the proof of (ii), one may replace u and u′ by supA and supB,

so one knows that supA+supB is an upper bound of the set A+B, then it

follows from the least upper bound, we have sup(A+B) ≤ supA+supB.

7. Definition. An element t ∈ F is called the infimum or greatest upper

bound of S if the following two conditions hold:

(i) t is a lower bound of S;

(ii) if c is a lower bound of S, then t ≥ c.

8. Definition. Let S ⊂ F be nonempty set, m ∈ F is called the maximum of

S, denoted by maxS, if m is an upper bound of S, and m ∈ S.


