- 3.6 Dedekind Completeness Axiom and Supremum Principle
- 1. Dedekind Completeness Axiom. An ordered field \mathbb{F} is said to satisfy Dedekind Completness Axiom (DAC), if for any non-empty partition $\{A, B\}$ of \mathbb{F} such that a < b for any $a \in A, b \in B$, then there exists exactly one $s \in \mathbb{F}$ such that
 - (i) If $u \in \mathbb{F}$ and u < s then $u \in A$, and
 - (ii) if $v \in \mathbb{F}$ and s < v then $v \in B$.
- 2. Definition. Let S be a non-empty subset of an ordered field F,
 (i) a number b is called an *upper bound* of S if x ≤ b for all x ∈ S, and
 (ii) a number c is called an *lower bound* of S if c ≤ x for all x ∈ S.
- 3. **Definition**. If $S \subset \mathbb{F}$ has an upper bound (a lower bound) in \mathbb{F} respectively, then S is called *bounded above* (*bounded below*) respectively. If S is called *bounded*, if S has both an upper bound and a lower bound.

Remark. A subset S of \mathbb{F} is not bounded above, if for any element $a \in \mathbb{F}$, there exists some $x \in S$ such that $x \leq s$.

4. **Definition**. Let S be a subset of an ordered field \mathbb{F} . An element $s \in \mathbb{F}$ is called the *supremum* or *least upper bound* of S if these two hold:

(i) s is an upper bound of S;

(ii) if b is an upper bound of S, then $s \leq b$.

5. Example. Let $A = \{x \in \mathbb{Q} \mid x \ge 0, \text{ and } x^2 < 2\}$. Prove that (i) A is bounded subset of \mathbb{R} ; (ii) $\sup A = \sqrt{2}$. **Proof.** (i) For any $x \in A$, we have $x + 2 \ge 0 + 2 > 0$, and $(x - 2)(x + 2) = x^2 - 4 < 2 - 4 < 0$. It follows from that x - 2 < 0 i.e. x < 2 for all $x \in A$, and the set A is bounded in \mathbb{R} .

(ii) For any $x \in A$, we have $x^2 < (\sqrt{2})^2$, and $-\sqrt{2} < x < \sqrt{2}$. So $\sqrt{2}$ is an upper bound of A. Let t be any upper bound of A. Want to prove

that $t \ge \sqrt{2}$. Assume contrary, that $t < \sqrt{2}$. As $1 \in A$, so t > 1 > 0. In this case, $t^2 < (\sqrt{2})^2 = 2$. Define $\rho = \min\{\frac{2-t^2}{2t+1}, 1\}$, so $\rho > 0$ and let $a = t + \rho$. It follows from $0 < \rho < 1$ that $-\rho > -1$ and $-\rho^2 > -\rho$. Consequently, $2-a^2 = 2-(t+\rho)^2 = 2-t^2-2t\rho - \rho^2 = 2-t^2-2t\rho - \rho > (2-t^2) - \rho(2t+1) \ge (2-t^2) - \frac{2-t^2}{2t+1}(2t+1) = 0$. In particular, $a^2 < 2$, and $a \in A$. Since $\rho > 0$ we have a > t, violating that t is an upper bound of A. Hence $\sup A = \sqrt{2}$.

6. Example. Let A and B be two non-empty, bounded subset of F.
Define A + B = { a + b ∈ F | a ∈ A, b ∈ B }. Prove that
(i) sup A ≤ sup B if A ⊂ B, (ii) A + B is bounded, and
(iii) sup(A + B) ≤ sup A + sup B.
Proof. (i) For any x ∈ A, we know that x ∈ B, and hence x < sup B.

Proof. (1) For any $x \in A$, we know that $x \in B$, and hence $x \leq \sup B$, i.e. $\sup B$ is also an upper bound of A. By (ii) in the definition of \sup , $\sup A \leq \sup B$.

(ii) Let u, l be any upper and lower bound of A respectively, i.e. $l \le a \le u$ for all $a \in A$. Similarly, define u', l' for B, then $l' \le b \le u'$ for all $b \in B$. In particular, $l + l' \le l + b \le a + b \le u + b \le u + u'$, for all $a \in A$ and $b \in B$. So l + l' and u + u' are lower and upper bounds of A + B respectively. Thus A + B is bounded.

(iii) As in the proof of (ii), one may replace u and u' by $\sup A$ and $\sup B$, so one knows that $\sup A + \sup B$ is an upper bound of the set A + B, then it follows from the least upper bound, we have $\sup(A+B) \leq \sup A + \sup B$.

- 7. **Definition**. An element $t \in \mathbb{F}$ is called the *infimum* or *greatest upper bound* of S if the following two conditions hold:
 - (i) t is a lower bound of S;
 - (ii) if c is a lower bound of S, then $t \ge c$.
- 8. Definition. Let $S \subset \mathbb{F}$ be nonempty set, $m \in \mathbb{F}$ is called the *maximum* of S, denoted by max S, if m is an upper bound of S, and $m \in S$.