3.6 Dedekind Completeness Axiom and Supremum Principle

1.

Dedekind Completeness Axiom. An ordered field F is said to sat-
isfy Dedekind Completness Axiom (DAC), if for any non-empty partition
{A, B} of F such that a < b for any a € A, b € B, then there exists
exactly one s € F such that

(i) If w € F and u < s then u € A, and

(ii) if v € F and s < v then v € B.

. Definition. Let S be a non-empty subset of an ordered field F,

(i) a number b is called an upper bound of S if z < b for all x € S, and

(ii) a number c is called an lower bound of S if ¢ < z for all x € S.

Definition. If S C F has an upper bound ( a lower bound ) in F respec-
tively, then S is called bounded above (bounded below) respectively. If S
is called bounded, if S has both an upper bound and a lower bound.

Remark. A subset S of F is not bounded above, if for any element a € F,
there exists some x € S such that z < s.

Definition. Let S be a subset of an ordered field F. An element s € F is
called the supremum or least upper bound of S if these two hold:

(i) s is an upper bound of S;

(ii) if b is an upper bound of S, then s < b.

. Example. Let A = {x € Q| z > 0, and 22 < 2}. Prove that (i) 4 is

bounded subset of R; (ii) sup A = v/2.

Proof. (i) For any z € A, we have t+2 > 0+2 > 0, and (z —2)(z+2) =
2?2 —4 <2—4<0. It follows from that x —2 < 0i.e. < 2 for all x € A,
and the set A is bounded in R.

(ii) For any = € A, we have 22 < (v/2)2, and —v/2 < = < v/2. So V2
is an upper bound of A. Let ¢t be any upper bound of A. Want to prove

that ¢ > +/2. Assume contrary, that ¢t < v/2. As 1 E A;sot >1>0.

In this case, t? < (v/2)? = 2. Define p = mln{ ,1}, so p > 0 and
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let a =t + p. It follows from 0 < p < 1 that —p > —1and —p? > —p.
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In particular, a®> < 2, and a € A. Since p > 0 we have a > t, violating
that ¢ is an upper bound of A. Hence sup A = v/2.

Consequently, 2—a? =2—(t+p)? 2

. Example. Let A and B be two non-empty, bounded subset of F.

Define A+ B={a+beF|ac A be B }. Prove that

(i) supA <sup B if A C B, (ii) A + B is bounded, and

(iii) sup(A + B) < sup A + sup B.

Proof. (i) For any x € A, we know that € B, and hence = < sup B,
i.e. sup B is also an upper bound of A. By (ii) in the definition of sup,
sup A <sup B.

(ii) Let u, ! be any upper and lower bound of A respectively, i.e. [ <a <wu
for all a € A. Similarly, define v/, 1’ for B, then I’ < b <« for allb € B. In
particular, [ +1' <l+b<a+b<u+b<u+u, foralla € Aandb e B.
So | + 1" and u + u’ are lower and upper bounds of A + B respectively.
Thus A + B is bounded.

(iii) As in the proof of (ii), one may replace u and u' by sup A and sup B,
so one knows that sup A+sup B is an upper bound of the set A+ B, then it
follows from the least upper bound, we have sup(A+ B) < sup A-+sup B.

. Definition. An element ¢ € F is called the infimum or greatest upper

bound of S if the following two conditions hold:
(i) t is a lower bound of S;

(ii) if ¢ is a lower bound of S, then ¢t > c.

8. Definition. Let S C I be nonempty set, m € F is called the mazimum of

S, denoted by max S, if m is an upper bound of S, and m € S.



