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1 Introduction

1.1 Syllabus

In this course EDUC 250, we are interested in the following topics:

1. Axioms of real number system;

2. Countable and uncountable sets;

3. Limits and continuity of functions of a variable;

4. Axiom of continuity;

5. Nested Interval Theorem;

6. Bolzano-Weirstrass Theorem;

7. Cauchy criterion of convergence and Heine-Borel Thorem;

8. Properties of continuous functions;

9. Elementary theory of differentiation.

1.2 Reference

1. Textbook: W.Rudin, Principles of Mathematical Analysis
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2. R. Bartle, Introduction to Real Analysis.
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2 Elementary Set Theory

1. Let X and Y be two sets. Let X × Y = { (x, y) | x ∈ X and y ∈ Y } be

the set of all pairs of ordered pairs (x, y).

2. Let X and Y be two sets. X and Y are said to have the same cardinality

or same power if there exists a bijection from X to Y.

3. A subset X is said to be countable if X is finite or it has the same cardi-

nality with N. As an example, the set Z of all integer is countable.

4. Let n be any natural number, and X be a countable set, then Xn is

countable.

3 Axioms of Real Number Field

3.1 Binary operations

Let F be a non-empty set, with two binary operations:

Addition + : F× F→ F, (x, y) 7→ x + y

Multiplication × : F× F→ F, (x, y) 7→ x · y

which satisfy the following axioms:

A-1 Commutative law for addition.

x + y = y + x for all x and y ∈ F.

A-2 Associative law for addition.

(x + y) + z = x + (y + z) for all x, y and z ∈ F.

It follows from this axiom that we can write x + y + z

A-3 Existence of zero element.

There exists a unique element 0 ∈ F, called zero, such that x + 0 = x for

all x ∈ F.

A-4 Existence of additive negative element.

For each element x ∈ F, there exists a unique element, denoted by −x,

such that x + (−x) = 0.

Remark. In this moment you shouldn’t think −x is given by (−1) · x.

This symbol has nothing to do with multiplication.

M-1 Commutative law for multiplication.

x · y = y · x for all x and y ∈ F.

M-2 Associative law for multiplication.

(x · y) · z = x · (y · z) for all x, y and z ∈ F.

M-3 Existence of unity element.

There exists a unique element 1 ∈ F, called the unity element, such that

x · 1 = x for all x ∈ F.

M-4 Existence of reciprocals.

For each x ∈ R with x 6= 0, there exists a unique element a−1 ∈ F, called

the reciprocal of x, such that x · x−1 = 1.

D Distributive law. x · (y +z) = x ·y +x ·z for any elements x, y, z ∈ R,

3.2 Group, Ring and Field

1. The binary operation + : F×F→ F satisfying Axioms A1-A4 provides an

algebraic structure for the set F, called a group.

2. The binary operations +, · : F×F→ F satisfying Axioms A1-A4, M1-M2

and D provides an algebraic structure, called a commutative ring.

3. A commutative ring satisfying M3-M4 is called a field. The set R of all

real numbers R with usual addition and multiplication is a field. However,

R has more properties than stated above as we will see later.



4. Theorem. Let F be a field, and a, b be two elements in F, then there

exists a unique element x ∈ F such that a+x = b. This element x is given

by x = b + (−a), usually denoted by b− a.

Proof. Set x = b + (−a), then a + x = x + a = ( b + (−a) ) + a =

b+( (−a)+a) = b+0 = b. It remains to prove that the equation x+a = b

has a unique solution. Suppose that c and c′ are two solutions of the

equation x + a = b, then c = c + 0 = c + (a + (−a)) = (c + a) + (−a) =

b + (−a) = (c′ + a) + (−a) = c′ + (a + (−a)) = c′ + 0 = c′.

Exercise: fill in the reasons why the equalities hold.

5. Theorem. Let F be a field, and a, b be two elements in F with a 6= 0,

then there exists a unique element x ∈ F such that a ·x = b. This element

x is given by x = b · (a−1), usually denoted by b/a.

Proof. Set x = b · (a−1), then a ·x = x · a = (b · (a−1) ) · a = b · (a−1 · a) =

b · 1 = b. It remains to prove that the equation a · x = b has a unique

solution in x. Suppose that c and c′ are two solutions of the equation

a · x = b, then c = c · 1 = c · (a · (a−1)) = (c · a) · (a−1) = b · (a−1) =

(c′ · a) · (a−1) = (c′ · a) · (a−1) = c′ · 1 = c′.

6. Theorem. (Basic Properties of zero). Let F be a field, a and b are

two elements in F. Then the following statements hold:

(1) a · 0 = 0. (2) a · b = 0 if and only if a = 0 or b = 0.

(3) a 6= 0 and b 6= 0 if and only if a · b 6= 0.

Proof. (1) a · 0 + a · 0 = a · (0 + 0) = a · 0, then a · 0 = a · 0 + 0 =

a·0+( a·0+(−(a·0) ) = ( a·0+a·0 )+( −(a·0) ) = (a·0)+( −(a·0) ) = 0.

(2) If any of a and b is zero, then it follows from (1) that a · b = 0.

In the following, assume that a and b are both non-zero. Suppose that

a · b = 0, then by M-4, there exists b−1 ∈ F such that b · b−1 = 1. So

a = a · 1 = a · (b · b−1) = (a · b) · b−1 = 0 · b−1 = 0, this is impossible.

(3) This is just restatement of (2).

7. Theorem. (Basic properties of unity element) Let F be a field, then the

following statements hold:

(1) If there are at least 2 elements in F, then 1 6= 0;

(2) (−1) · a = −a for all a ∈ F;

(3) a/1 = a for all a ∈ F.

Proof. (1) Suppose contrary, i.e. 1 = 0, then a = a · 1 = a · 0 = 0 for all

a ∈ F. So F = {0}, and this is a contradiction.

(2) (−1) · a + a = (−1) · a + 1 · a = (−1 + 1) · a = 0 · a = 0, and hence,

−a = (−1) · a.

(3) Let x = a/1, then it follows from the theorem that x = 1 · a = a. So

we have a/1 = a for all a ∈ F.

8. Remark. Though real number field R is the one we are most familiar

with, but here is an exotic example of field: F = {0, 1} in which addition

is defined as 0 + 0 = 0, 1 + 0 = 1 and 1 + 1 = 0; and multiplication is

defined as 0 · 0 = 0, 1 · 1 = 1 and 1 · 0 = 0. This example serves a very

important in algebra and coding theory.

3.3 Ordered Field

1. Definition. A field F is called an ordered field, if there exists an non-

empty subset P satisfying the following two conditions:

C-1 For any x ∈ F, exactly one of the following three alternatives holds:

(i) a ∈ P ; (ii) a = 0; (iii) −a ∈ P .

This is equivalent to say that the subsets P, {0}, and −P =

{ −x | x ∈ P } form a partition of the set F. Sometimes, this is

axiom of trichotomy.

C-2 If x, y ∈ P, then x + y ∈ P and x · y ∈ P.

This means that the set P is closed under addition and multiplication.



2. Definition. Given a, b ∈ F, define a < b if b − a ∈ P. An element x ∈ F
is called positive (negative), if x ∈ P ( x ∈ −P ) respectively.

3.4 Properties of Inequalities

For all x, y, z ∈ F, we have

I-1 Transitivity: If x < y and y < z, then x < z.

(x < y) ∧ (y < z) ⇐⇒ (y − x ∈ P ) ∧ (z − y ∈ P ) =⇒ z − x =

(z − y) + (y − x) ∈ P ⇐⇒ x < z.

I-2 Trichotomy: Exactly one of the following relations x < y, x = y, x > y

holds.

I-3 If x < y, then x + z < y + z.

And we have x + z < y + z =⇒ x = (x + z) + (−z) < (y + z) + (−z) = y.

It follows that x + z < y + z is equivalent x < y.

I-4 (i) If x < y and z > 0 then x · z < y · z.

(ii) If x < y and z < 0 then x · z > y · z.

I-5 (i) 1 > 0 and −1 < 0.

Since 1 6= 0, we have only one the following holds: 1 ∈ P and 1 ∈ −P.

If 1 ∈ −P, then −1 ∈ P. And if follows that 1 = (−1) · (−1) ∈ P which

contradicts to our assumption 1 ∈ −P.

I-6 If x > 0, then 1/x > 0.

Assume contrary, then 1/x < 0 or 1/x = 0. It follows from x > 0 that

x 6= 0, i.e. x ∈ F \ {0}, so 1/x ∈ F \ {0} and x 6= 0. Then 1/x < 0 holds,

it follows from I-4(i) 1 = (1/x) · x < 0 · x = 0 which contradicts to I-5.

I-7 If 0 < x < y, then 0 < 1/y < 1/x.

From the given conditions 0 < x < y, we know that
1
x

> 0,
1
y

> 0 and

y − x < 0. So we have
1
yx

=
1
y
· 1
x

> 0 and (y − x) · 1
yx

< 0 · 1
yx

= 0. So

1
x
− 1

y
=

y − x

xy
= (y − x) · 1

xy
< 0.

I-8 If z > 0 and x · z < y · z, then x < y.

x = (x · z) · 1
z

< (y · z) · 1
z

= y.

Notations. In the following, suppose that a, b, x and y are elements of an

ordered field F.

1. We also write x > y to represent y < x, and we write x ≤ y ⇐⇒ (x = y)

or (x < y). Similarly, x ≥ y ⇐⇒ (x = y) or (y < x). One can easily write

down the analogy inequalities with ≤ instead of < .

2. In the following, we will assume that the ordered field is the field R of

real numbers. As usual, if a < b, then we denote the open interval by

(a, b) = { x ∈ R | a < x < b }, which is the set of real numbers lying

between a and b, but not the end points. Similarly, we have the closed

interval [a, b] = { x ∈ R | a ≤ x ≤ b }, which is the set of real numbers

lying between a and b, and the end points a and b.

3. There are some other intervals which may be useful too, such as: (a, b] =

{ x ∈ R | a < x ≤ b } and [a, b) = { x ∈ R | a ≤ x < b }. Moreover, one can

also relax the finiteness of a or b, then we have the unbounded intervals

as follows: (−∞, b] = {x ∈ R | x ≤ b } and (a,+∞) = {x ∈ R | a ≤ x }.

4. Though open and closed intervals are simple objects as sets, but they play

vital role in the real analysis, as soon as we discuss the concept of limit.

3.5 Absolute Value

1. Let F be an ordered field, define absolute value map | · | : F→ F as follows:

a =





a if a > 0 or a = 0;

−a if a < 0
.



2. If a, b ∈ F and b ≥ 0, then |a| ≤ b if and only if −b ≤ a ≤ b.

3. For all x and y in an ordered field, we have

(a) |xy| = |x| · |y|;
(b) |x + y| ≤ |x|+ |y|;
(c) | |x| − |y| | ≤ |x− y|.

3.6 Dedekind Completeness Axiom and Supremum Principle

1. Dedekind Completeness Axiom. An ordered field F is said to sat-

isfy Dedekind Completness Axiom (DAC), if for any non-empty partition

{A,B} of F such that a < b for any a ∈ A, b ∈ B, then there exists exactly

one s ∈ F such that

(i) If u ∈ F and u < s then u ∈ A, and

(ii) if v ∈ F and s < v then v ∈ B.

2. Definition. Let S be a non-empty subset of F,
(i) a number b is called an upper bound of S if x ≤ b for all x ∈ S, and

(ii) a number c is called an lower bound of S if c ≤ x for all x ∈ S.

3. Definition. If S ⊂ F has an upper bound ( a lower bound ) in F respec-

tively, then S is called bounded above (bounded below) respectively. If S is

called bounded, if S has both an upper bound and a lower bound.

Remark. A subset S of F is not bounded above, if for any element a ∈ F,

there exists some x ∈ S such that x ≤ s.

4. Definition. Let S be a subset of an ordered field F. An element s ∈ F is

called a supremum or least upper bound of S if the following two conditions

hold:

(i) s is an upper bound of S;

(ii) if b is an upper bound of S, then s ≤ b.

5. Definition. An element t ∈ F (if exists) is called a infimum (or greatest

upper bound of S if the following two conditions hold:

(i) t is a lower bound of S;

(ii) if c is a lower bound of S, then s ≥ c.

6. Definition. An ordered field F is said to satisfy the supremum principle

if any bounded above nonempty subset S of F has supS ∈ F.

7. Theorem. For any ordered field F, supremum principle follows from

Dedekind completeness axiom.

Proof. Let B be the set of all upper bounds of S, then B 6= ∅. Let

A = F \B. Since S 6= ∅, choose an element x ∈ S. Then x− 1 < x, and so

x− 1 /∈ B, i.e. x− 1 ∈ A and A 6= ∅.

Obviously A ∪ B = F and A ∩ B = ∅. Suppose that a ∈ A and b ∈ B,

then by definition, a is not an upper bound of the set S, so there exists

an element x ∈ S so that a ≤ x. Moreover, b is an upper bound of S, and

so x ≤ b, it follows that a ≤ x ≤ b. It follows from A ∩B = ∅ that a < b.

Then from DCA, there exists an element s ∈ F so that s separates the

two subset A and B. It remains to prove that s = supS as follows:

(a) Suppose that x ∈ S, want to prove x ≤ s. Because s ∈ F = A ∪ B,

so we s ∈ A or s ∈ B. If s ∈ A, then s is not an upper bound of

S, so there exists x ∈ S so that s < x. But then the real number

a =
s + x

2
>

s + s

2
= s, and hence by the DCA, we have a ∈ B, i.e.

a is an upper bound of S. However, a =
s + x

2
<

x + x

2
= x, which

is contradiction. So x ≤ s, i.e. s is an upper bound of S.

(b) Suppose that c is an upper bound of S, we want to prove c ≥ s.

Assume contrary, that is c < s, then it follows from DCA that c ∈ A,

which contradicts to the assumption that c is an upper bound of S.



Remark. In fact, the supremum principle is equivalent to Dedekind com-

pleteness axiom, as we will prove later.

8. Theorem. Suppose that ordered field F satisfies the supremum principle,

then Dedekind completeness axiom also holds in F.

Proof. Let A and B be two non-empty subsets of F satisfying the condi-

tions stated in Dedekind completeness axiom. Want to show there exists

an element s ∈ F satisfying (i) and (ii) in (3.5.1). Since B 6= ∅, choose

any element b ∈ B. Then it follows from the given conditions on A and

B, we have a < b for all a ∈ A. In particular A is bounded above. Then

by Supremum principle, s = supA exists.

Now we prove that s satisfies (i). For any u ∈ F with u < s, needs to show

that u ∈ A. Suppose contrary, then u ∈ B, so u is an upper bound of A as

in above. As s is the supremum (least upper bound), we know that s ≤ u,

which is violates u < s. Then we prove that s satisfies (ii). For any v ∈ F
with s < v, needs to show v ∈ B. Suppose contrary, then v ∈ A. But s is

an upper bound of S, we know v ≤ s, which violates the condition on v.

9. Corollary. Suppose that S be a non-empty subset of an ordered field F
satisfying Dedekind completeness axiom, and S is bounded below, then S

has an infimum in F.

10. Theorem. Let S be an non-empty subset of an ordered F, then s = supS

if and only if the following two conditions hold:

(i) x ≤ s for all x ∈ S, and

(ii) for each ε > 0, there exists x ∈ S such that x > s− ε.

Proof. Assume that (i) and (ii) hold, want to prove s = supS. First,

from (i) we know that s is an upper bound of S. Suppose that b is an

upper bound of S, want to prove b ≥ s. Assume contrary, i.e. b < s, then

let ε = (s − b)/2 > 0, by (ii) there exists x ∈ S such that x > s − ε =

s− (s− b)/2 = (s + b)/2 > (b + b)/2 = b, which contradicts to the fact b

is an upper bound of S. Hence b ≥ s.

Assume that s = supS, want to show that both (i) and (ii) hold.

As s is an upper bound of S, it suffices to establish (ii). Assume that (ii)

fails, then there exists a real number ε0 > 0, such that for any x ∈ S we

have x ≤ s− ε0. So s− ε0 is also an upper bound of S, less than s, which

contradict to the fact that s = supS.

11. Definition. R is called the field of real numbers, if R is an ordered field

satisfying supremum principle. Any element in R is called a real number.

4 Natural Numbers

We are reversing the set-theoretic construction of the real numbers. Suppose

that R has been constructed, and we want to describe some of its subsets, the

set of natural numbers, and the set of integers, for example.

1. Definition. A subset I of R is called an inductive set if the following two

conditions are satisfied: (i) 1 ∈ I, and (ii) if n ∈ I, then n + 1 ∈ I. Let

I be the family of the all inductive subsets I of R, and N =
⋂

I∈I
I. The

elements of N are called natural numbers.

From its definition, N is the smallest (in the inclusion sense) inductive

subset of R.

2. Theorem. Mathematical Induction Principle.

Let S be an non-empty subset of N such that

(a) 1 ∈ S;

(b) If n ∈ S, then n + 1 ∈ S.

Then S = N.

Proof. By definition, S is an inductive subset of R, hence N ⊂ S. More-

over, if follows from S ⊂ N that S = N.



Remark. In most secondary mathematical textbooks, the number 0 is

also regarded as a natural number. In this case, we just need to modify

the axiom from 1 ∈ I to 0 ∈ I. The rest is basically unchanged when we

discuss the inductive subset of R. But one has to pay attention when we

discuss the other properties of the set of natural numbers, sometimes one

needs to modify the statements or propositions a little bit.

3. Theorem. (Archimedean Order Property).

If a, b ∈ R, and a > 0, then there exists n ∈ N such that na > b. In

particular, the set N is not bounded above in R.

Proof. Assume contrary, there exist real numbers a and b, with a > 0,

such that na ≤ b for all natural number n ∈ N. Let S = { na | n ∈ N },
then a ∈ S and that b is an upper bound of S. So the supremum of S

exists in R, and is denoted by s. Since a > 0, then there exists n ∈ N,

such that na > s− a, i.e. (n + 1)a > s. As (n + 1)a ∈ S, this contradicts

to s is the upper bound of S.

Finally, if we take a = 1 > 0, then it follows from the first part that for

any b ∈ R, there exist n ∈ N so that n = n · a > b.

Remark. There exist a non-archimedean complete field, of course, it is

not the field of real numbers. But archimedean property is very important

in elementary analysis, however, it is also useful to know which property

of R requires archimedean assumption.

4. Theorem. For each n ∈ N, we have:

(a) 1 ≤ n;

(b) If n > 1, then n− 1 ∈ N;

(c) If x is a positive real number, and x + n ∈ N, then x ∈ N.

(d) If m,n are natural numbers such that m > n, then m− n ∈ N.

(e) If a ∈ R and n ∈ N such that n− 1 < a < n, then a /∈ N.

Proof. (a) It follows from { x ∈ R | x ≥ 1 } is an inductive subset of R,

and hence N is a subset of this interval.

(b) Define S0 = {n ∈ N | n−1 ∈ N } and S = {1}∪S0. We want to prove

that S = N. Obviously, S ⊂ N, and 1 ∈ S. Suppose that n ∈ S then

either n = 1 or n ∈ S0. In the first case 2 = 1− 1 ∈ N, and so 2 ∈ S0.

And in latter case, we have n − 1 ∈ N. So if follows from inductive

assumption, we have (n+1)−1 = n = (n−1)+1 ∈ N. Then we have

n + 1 ∈ S0, and so n + 1 ∈ S. In any cases, n + 1 ∈ S. Then by the

principle of mathematical induction, S = N. So n − 1 ∈ N provided

n (> 1) is a natural number.

(c) Given any positive real number x, let T = { n ∈ N | (c) holds }. We

want to show T = N. First if x + 1 ∈ N, then x + 1 > 0 + 1 = 1 and

by (b) we know that x = (x + 1)− 1 ∈ N, so we have 1 ∈ T. Second,

we suppose n ∈ T, want to show that n + 1 ∈ T.

For this we assume that x+(n+1) ∈ N, then we know that x+n+1 >

0+n+1 > 1 and hence by ( b) we know that x+n = x+(n+1)−1 ∈ N.

From induction hypothesis we know that n ∈ T, it means that if

x + n ∈ N, then x ∈ N. So x ∈ N, and n + 1 ∈ T. In this case T = N.

(d) Let x = m− n, then x > 0. So (m− n) + n = m ∈ N, and it follows

from (c) that m− n ∈ N.

(e) Suppose contrary, i.e. a ∈ N. Then from n − 1 < a < n, we have

n < a + 1 and 0 < (a + 1)− n < (n + 1)− n < 1, which is impossible

for natural integers.

5. Theorem. (Well-Ordering Property of N).

If A ⊂ N is non-empty, then A has a smallest element, i.e. inf A ∈ A.

Proof. Suppose contrary, i.e. A has no smallest element. Let S = { n ∈
N | n < a for some a ∈ A }. We will prove that S = N.

(i) First we prove that 1 ∈ S; otherwise, 1 /∈ S i.e. for all a ∈ A we have



1 ≥ a. In this case, it follows from (a) in the previous theorem that

A = {1}, and inf A = 1, which violate our original assumption.

(ii) Suppose that n ∈ S, want to prove that n + 1 ∈ S. Assume contrary,

n + 1 /∈ S. Then for all a ∈ A, we have n + 1 ≥ a. But it follows

from n ∈ S, there exist some b ∈ A so that n < b. Consequently,

n < b < n + 1 which violates (e) of the previous theorem. In this

case n + 1 ∈ S.

Finally, A is non-empty, there exists a ∈ A. Because A ⊂ N = S, so a ∈ S.

In particular, a < a, which is a contradiction.

6. Theorem. If m,n ∈ N, then (m + n) and m · n ∈ N.

Proof. Fix m ∈ N and let S = { n ∈ N | (m + n) ∈ N }, and similarly

T = { n ∈ N | m · n ∈ N }. Obviously S and T are subsets of N. In the

following, we prove S = T = N by means of mathematical induction.

By means of inductive set and x · 1 = x, we know that 1 ∈ S and 1 ∈ T.

Suppose that n ∈ S, i.e. (m + n) ∈ N, then inductive set m + (n + 1) =

(m + n) + 1 ∈ N. Suppose that n ∈ T, i.e. m · n ∈ N, then by distributive

law of multiplication, we have m · (n+1) = m ·n+m ∈ N, while the latter

holds because of the addition of natural numbers is closed which has just

been established.

7. Definition. A real number x is called an integer if exactly one of the

following holds: x = 0, x ∈ N or −x ∈ N. The set of all integers is denoted

by Z.

8. Theorem. For every real number x, there exists a unique integer n ∈ Z
such that n ≤ x ≤ n + 1. This integer n is usually denoted by [x], called

the integral part of x.

Proof. Suppose that x ≥ 0., Let S = { n ∈ N | n ≤ x}. Then 0 ∈ S, and

hence it is a non-empty subset of N, and is always bounded above by x.

By the well-order property of N, we know that maxS exists and is also in

S too. let n = maxS. Then we known that n ≤ x, and that n + 1 /∈ S, if

follows that n + 1 > x.

It remains to prove the uniqueness. If m is another integer satisfying

m ≤ x < m + 1. Suppose that m 6= n, without loss of generality, we may

assume that n < m, then because of natural numbers, we have n+1 ≤ m.

It follows from the conditions on m and n, we have x < n + 1 ≤ m ≤ x,

which implies x < x, but this is impossible.

Return to the other case that x < 0, then −x > 0, and so we have an

integer m satisfying m ≤ −x < m + 1. Then −m − 1 < x ≤ −m we can

take n = −m− 1 if x /∈ Z and n = −m if x = −m.

4.1 Rational and Irrational Numbers

1. Definition. A real number x is called a rational number if x can be

expressed in the form x = i
k , where k 6= 0 and l, k ∈ Z. The set of all

rational numbers is denoted by Q.

2. Definition. A real number x is called an irrational number if it is not

a rational number, i.e. it can be expressed as a fractions with integral

denominator and numerator. So the set of irrational numbers is given by

R \Q.

3. Theorem. (Density of Rational Numbers) For any real numbers x

and y ∈ R (x < y), there exists at least a rational number r ∈ Q such that

x < r < y.

Proof. According to Archimedean principle, there exists a natural num-

ber m ∈ N such that 0 < 1
m < y − x. Let n = [mx] + 1 ∈ Z, then we have

n− 1 ≤ mx < n, and hence, x <
n

m
=

[mx] + 1
m

≤ mx + 1
m

= x +
1
m

< y.

Let r =
n

m
, we have x < r < y.

4. Theorem. (Density of Irrational Numbers) For any real numbers x

and y ∈ R (x < y), there exists at least an irrational number r ∈ R \ Q



such that x < r < y.

Proof. Apply previous to x/
√

2 and y/
√

2, then there exist s ∈ Q such

that x/
√

2 < s < y/
√

2. Let r = s
√

2, if follows that x < r < y, where r

is irrational.

5. Remark. One can easily verify that Q is a field under the usual addition

and multiplication. Moreover, it is well-known that
√

2 ∈ R \Q, so Q is a

proper subset of R.

4.2 Square root and nth root

1. Show that there exists a positive number x ∈ R such that x2 = 2.

Solution. Let S = {t ∈ R | t > 0 and t2 ≤ 2 }.

(a) Then 1 ∈ S, then S is non-empty.

(b) For any real number t ∈ S, we have t > 0 and t2 ≤ 2 < 4, so

(t− 2)(t + 2) < 0. As we know that t + 2 > 0 + 2 = 2 > 0, and hence

t− 2 < 0, i.e. t < 2. Hence 2 is an upper bound of S.

(c) Then supS exists, and is denoted by x.

It remains to show that x2 = 2. We know that 1 ∈ S and hence 1 ≤ x.

(i) Suppose that x2 < 2, then
2− x2

2x + 1
> 0. It follows from the

Archimedean property, there exists positive integer n such that
1
n

<
2− x2

2x + 1
. Thus

(
x +

1
n

)2

= x2 +
2x

n
+

1
n2

≤ x2 +
2x + 1

n
<

x2 + (2 − x2) = 2. So x +
1
n
∈ S, which violates the definition of

x = supS.

(ii) If x2 > 2, then x2 − 2 > 0 and hence x >
x2 − 2

2x
> 0. It follows

from the definition of x = supS there exists an element y ∈ S such

that y > x − x2 − 2
2x

> 0. Thus we have y2 >

(
x− x2 − 2

2x

)2

=

x2 − (x2 − 2) +
(x2 − 2)2

4x2
> 2, this violates y ∈ S.

Remark. For any positive number a > 0, one can follow the same idea

to prove that there exists a unique positive number b so that b2 = a The

number b is called the positive square root of a.

2. Example. Show
√

2 is not a rational number.

Solution. We need to use the unique factorization property of positive

integer which we are not going to discuss in details. Suppose contrary, then√
2 = m

n , where m and n are relative prime integers and n > 0. Rewrite

the equality in the set of integers, instead of rational numbers, so we have

2n2 = (
√

2n)2 = m2. Now we have 2 | 2n2 = m2, and hence 2 | m2. Then

2 is a prime, and hence 2 | m. So we rewrite m = 2k, where k ∈ Z. Then

the equation becomes 2n2 = (2k)2 = 4k2, i.e. n2 = 2k2. Repeat the same

argument as before, and so 2 | n. In particular, 2 | gcd(m,n) = 1, which

is impossible.

Remarks. (i) When we assert that 2 | m2 implies 2 | m, UF ( Unique

Factorization ) property of Z is essential.

(ii) One can prove that UF property by means by induction.

3. Theorem. For any positive real number x, and every integer n > 0 there

exists one and only one positive y such that yn = x.

Proof. (Uniqueness). If y1 and y2 are two positive numbers such that

yn
1 = x = yn

2 , then 0 = yn
1 −yn

2 = ( y1−y2 )( yn−1
1 +yn−2

1 y2+ · · ·+y2y
n−2
2 +

yn−1
2 ). As the second factor is positive, then we have y1 − y2 = 0, and

hence y1 = y2.

(Existence). Let E = { s ∈ R | s > 0 and sn < x}. Want to prove that

supE is the n-th root of x. Let t = x
x+1 . It is obviously that t < x and

that 0 < t < 1. Hence we have tn < t < x. In particular, E 6= ∅.
Now we want to prove that 1 + x is an upper bound of E. For any real

number a > 1 + x, want to prove that then a > 1 + x > 1 and hence

an > a > 1 + x > x, so that a /∈ E. In particular, we have sn ≤ x < an, so

s < a. So 1 + x ≥ s, i.e. 1 + x is an upper bound of E.



By supremum principle and t > 0, we know that y = supE exists, and

is a positive number. It remains to show that yn = x. Suppose contrary,

then we have two cases: (i) yn < x; and (ii) yn > x.

(i) If yn < x, then choose h ∈ (0, 1) such that h <
x− yn

n(y + 1)n−1
. Want

to prove that y + h ∈ E as follows:

(y + h)n − yn

< [(y +h)− y] · [(y +h)n−1 +(y +h)n−2y + · · ·+(y +h)yn−2 + yn−1]

< h[(y + h)n−1 + (y + h)n−1 + · · · + (y + h)n−1] = nh(y + h)n−1 <

nh(y +1)n−1 = x− yn. And hence (y +h)n < x, i.e. y +h ∈ E which

violates that y = supE.

(ii) If yn > x, set k =
yn − x

nyn−1
. Then 0 < k =

yn − x

nyn−1
<

yn

nyn−1
=

y

n
≤ y.

If a ≥ y − k, then yn − an ≤ yn − (y − k)n < knyn−1 = yn − x. Thus

an > x, and a /∈ E. It follows that y − k is an upper bound of E,

which violates that y is the least upper bound of E.

Hence yn = x.

Remark. As the n-th root is an operation on the set R of real numbers,

like the arithmetic operations, it satisfies several algebraic identities. We

leave these as your exercises to check these identities.

5 Heine-Borel Theorem

1. Definition. A family F of open intervals is a set of open intervals, i.e.

each element I ∈ F is an open interval (a, b). Sometimes, we write F =

{ Uα }α∈J if we want to indicate the open intervals Uα, where α is the

index from the indexed set J.

2. Definition. A subfamily F0 of F means that every member in F0 is a

member of F. Given F is a family of subsets in R, a subfamily G of F is

said to be finite if G has only finite members.

3. Definition. Let S ⊂ R. A family F of open intervals is said to cover ( or

to be an open covering of ) S if for each each point x ∈ S, there exists an

open interval I ∈ F such that x ∈ I, that is S ⊂
⋃

I∈F
I.

4. Definition. S ⊂ R is called compact if for each family F of open covering

of S, there exists a finite subfamily F0 of F such that F0 covers S.

5. Theorem. (Heine-Borel). Finite closed interval [a, b] is a compact set,

where a < b are finite numbers.

Proof. Suppose that F is a family of open intervals covering [a, b]. Let

S = { x ∈ [a, b] | [a, x] can be covered by a finite subfamily of F }.

(a) First a ∈ S, as F covers [a, b], hence there exists an open set U in F

such that a ∈ U. So S 6= ∅.
(b) S is bounded since S ⊂ [a, b]. By the supremum principle, s = supS

exists. It remains to show that s = b. Suppose contrary, then s < b.

From the covering F, there exists an open interval U0 ∈ F such

that s ∈ U0. Since U0 is open interval, there exists d > 0 such that

(s − d, s + d) ⊂ U. It follows from the definition of supremum of

S, we have [a, s0] can be covered by a finite subcover of F, where

s−d < s0 < s. So { U0, U1, · · · , Un } is a finite subcover of [a, s+d/2].

But it violates that s is an upper bound of S.

6 Sequence and Subsequence

1. Definition. A sequence of real (complex) numbers is a function x : N→
R ( C). We usually denote a sequence by (xn)n∈N, or { xn }n∈N, or simply

(xn). The k-th term of sequence (xn) is given by the value of xk.

Given a sequence (xn)n∈N, consider a sequence of increasing positive in-

tegers: n1 < n2 < n3 < · · · , then the sequence ( xni )i∈N is called a

subsequence of (xn).



Sometimes, we may extend the concept of sequence defined on N to the

one defined on N×N, called double indexed sequence, or to the one defined

on Z.

2. Definition. Let ( xn ) be a sequence of real numbers.

(a) (xn) is called (strictly) increasing if xn+1 > xn for all n ∈ N; and

non-decreasing if xn+1 ≥ xn for all n ∈ N.

(b) (xn) is called (strictly) decreasing if xn+1 < xn for all n ∈ N; and

non-increasing if xn+1 ≤ xn for all n ∈ N.

(c) (xn) is called monotone, if it is either strictly increasing or strictly

decreasing.

3. Definition. A sequence (xn) of real numbers (complex numbers) is said

to converge if there exists a ∈ R (a ∈ C) such that for any given ε > 0

there exists a natural number N such that |xn − a| < ε for all n ≥ N.

Remark. This definition is very important in modern analysis.

6.1 Equivalent definitions of sequential limit

Given a sequence (xn)n≥1 of real numbers, and we say that a is the limit of

the sequence (xn)n≥1 if one of the following holds:

1. (ε−N definition). For any given ε > 0 there exists a natural number N

such that |xn − a| < ε for all n ≥ N.

2. (Open Neighborhood definition). For any ε > 0, there are only finitely

many terms in the sequence {xn} outside the neighborhood U(a, ε) of the

limit a.

3. (Subsequence form). Every subsequence { xnk
} of {xn} is convergent.

6.2 Consequences of the existence of limit

1. The limit of a convergent sequence is unique.

Proof. Let a and b be the limits of a convergent sequence (xn), want

to prove that a = b. Assume contrary, Then let ε = |a − b|/2 > 0, there

exist n1 and n2 such that |xn − a| < ε for n ≥ n1 and |xn − b| < ε for

n ≥ n2. Take N = max{n1, n2}, so |a − b| = |(a − xN ) − (b − xN )| ≤
|a− xN |+ |b− xN | < ε + ε = |a− b|, which is impossible.

2. Every convergent sequence is bounded.

Proof. Let a = lim
n→∞xn, take ε = 1 > 0, there exist N such that |xn−a| <

1 for all n ≥ N. Then |xn| = |(xn − a) + a| ≤ |xn − a| + |a| < 1 + |a| for

all n ≥ N. Take M = max{ |x1|, |x2|, · · · , |xN−1|, 1 + |a| }, then we have

|xn| ≤ M for all n ∈ N.

3. Deleting, inserting, or modifying finitely many terms of a convergent se-

quence does not alter its limit.

4. A convergent sequence, under rearrangement, converges to same limit.

Proof. Let π : N → N be a bijective map. Let yn = xπ(n), then

the sequence (yn) is a rearrangement of (xn). For any ε > 0, there

exists N > 0 such that |xn − a| < ε for all n > N. Let M =

max{π−1(1), π−1(2), · · · , π−1(N)}, then for any n > M we have π(n) > N

so we have |yn − a| = |xπ(n) − a| < ε. Then we have lim
n→∞yn = a.

6.3 Divergence Criterion

Theorem. Let (xn) be a sequence of real numbers. Then the followings are

equivalent:

1. The sequence (xn) does not converge to x ∈ R.

2. There exists an varepsilon0 > 0 such that for any k ∈ N, there exists

rk ∈ N such that rk ≥ k and |xrk
− x| ≥ ε0 > 0.



3. There exists an ε0 > 0 and a subsequence (xnk
) such that |x−xnk

| ≥ ε0 > 0

for all n ∈ N.

6.4 Techniques of establishing the sequential limits

In order to prove that lim
n→∞xn = a, one needs to prove the following:

∀ε > 0, ∃N > 0 such that ∀n > N, we have |xn − a| < ε.1

1. (Determine the smallest N.) By solving the inequality |xn − a| < ε, or

by equivalent substitution, it is possible to determine all n satisfying the

inequality, then one can choose the minimum N(ε), so that ∀n > N, then

|xn − a| < ε.

2. (Relaxing the bound.) Sometimes, it is difficult to solve the inequality

|xn − a| < ε explicitly, and hence determine the solution set of all n. In

this case, one can simplify the inequality |xn − a|, and even obtain an

upper bound in the form of a new function H(n), usually simpler than

the original one, such that |xn − a| ≤ H(n). Then it remains to solve the

inequality H(n) < ε.

Remark. However, it could happen that the solution set of H(n) < ε is

a proper subset of that of the original inequality |xn − a| < ε.

3. (Divide and Conquer.) Sometimes, it is impossible to simplify, or to relax

the inequality without any assumption on the values of n. So one can

consider sufficiently large n > N1, (N1 is some fixed integer) so that

one can bound |xn − a| by H(n), and even determine the solution set of

n > N(ε) satisfying the inequality constraint H(n) < ε. Then the desired

integer can be set to be N = max{N1, N(ε) }.
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7 Continuity Axiom of Real Numbers

1. Supremum Principle. Every non-empty subset S of the real number

field R, bounded above, has a supremum in R.

2. Monotone Convergence Theorem. Bounded montone sequence is con-

vergent.

3. Nested Interval Theorem. Suppose that { In | n = 1, 2, · · · , } be a

family of intervals satisfying:

(a) In ⊃ In+1 for n = 1, 2, · · · ;
(b) lim

n→∞|In| = 0, where | [a, b] | = b−a, is the length of the interval [a, b].

Then the exists an unique real number x such that x ∈ In for all n, and

lim
n→∞an = lim

n→∞bn = x, i.e.
⋂

n≥1

In = {x}.

4. Theorem of Finite Subcover. If the family F of open intervals cover

the closed interval [a, b], then there exists a finite subcover G of F covering

[a, b].

5. Theorem of Accumulation Points. Every bounded infinite subset of

R has at least an accumulation point.

6. Bolzano-Weierstrass Theorem. Every bounded sequence has a con-

vergent subsequence.

7. Cauchy Criteria of Convergence. {an}n≥1 converges if and only if

for any given ε > 0, there exists N ∈ N such that |an − am| < ε for all

n,m > N.

In the following, we will prove that these 7 conditions are equivalent. We start

from Nested Interval Theorem to prove that finite subcover exists for any open

covering of [a, b].



( NIT ⇒ TFS ). Suppose contrary, assume that interval I1 = [a, b] can not be

covered by any finite subcovers of a covering F of [a, b]. Subdivide the interval

[a, b] into two closed subinterval of equal lengths. By assumption at least one

I2 of these two closed subinterval can not be covered by a finite subcover of F.

One can use mathematical induction to define a sequence of nested intervals

I1 ⊃ I2 ⊃ · · · ⊃ In · · · with length |Ik+1| = |Ik|/2 as follows:

Suppose that I1, I2 · · · , In has been defined, divide the interval In into two

closed subintervals of equal length.

If both of these two subintervals can be covered by two finite subcovers F1

and F2 of F respectively, then the union F1 ∪ F2 is a finite subcover of F.

Going backward, one can see that I1 = [a, b] can also be covered by a finite

subcover G of F, which violates our first assumption. It follows that one of the

two subintervals of In has no finite subcover of F, call it In+1 and its length

|In+1| = |In|/2.

By Nested Interval Theorem, we know that ∩n≥1In = {x0} where x0 ∈ [a, b].

Then there exists an interval J0 ∈ F containing the point x0. As J0 is an open

interval of positive length, there exists a natural number N such that In ⊂ J0

for all n ≥ N. But it violates that In can’t be covered by any finite subcover

of F.

( TFS ⇒ TAP ). Let S be a bounded infinite subset of R, want to prove that

S has at least an accumulated point. Suppose contrary, i.e. any real number is

not an accumulated point of S. As S is bounded, we may assume that S ⊂ [a, b].

In particular, any point x of [a, b] is not an accumulated point of S, then there

exist εx > 0, depending on x, such that the open interval U(x) = (x−εx, x+εx)

intersects S at most one common point x, i.e. U(x)∩ S ⊂ {x}. Now we define

a covering of [a, b] as follows: F = { U(x) = (x−ε, x+ε) | x ∈ [a, b] }, which is

obviously an open covering of [a, b]. By Theorem of Finite Subcover, we know

that there exist a finite subcover { U(x1), U(x2), · · · , U(xn) } of F covering

the interval [a, b]. In particular,
⋃n

i=1 U(xi) ⊃ [a, b] ⊃ S. Now S is infinite,

then by pigeonhole principle there exists an open interval U(xk) containing

infinitely many points of S. But it violates the choice of U(x) which contains

at most a point in S.

( TAP⇒ BWT ). Suppose that (xn) be a bounded sequence of real numbers.

There are two cases:

(i) the sequence (xn) takes on finitely many values. Then there exists a subse-

quence taking on a constant value, and hence it is convergent.

(ii) the sequence (xn) takes on infinitely many values. In this case, the set

S = { xn | n ≥ 1 } is a bounded infinite subset of R, and hence by TAP,

S has at least an accumulated point a. It remains to construct a convergent

subsequence (xni)i≥1 with limit a as follows: (i) xi1 = x1; (ii) By definition of

a, for any k ≥ 1 there exists a point xik which lies in the punctured interval

( a− 1
k , a + 1

k ) \ {a, xi1 , xi2 , · · · , xik−1
}.

( BWT ⇒ CCC). Let (xn)n≥1 be a Cauchy sequence, i.e. for any given ε > 0,

there exists N ∈ N (depending on the choice of ε ) such that |xn − xm| ≤ ε

whenever n,m ≥ N. Want to establish the limit of the sequence (xn). First

we prove that the sequence is bounded as follows: Take ε = 1 then there

exists n0 such that |xn0+1 − xm| < 1 for all m ≥ n0. In particular, we have

|xm| < 1 + |xn0+1|. Take M = max{|x1|, |x2|, · · · , |xn0 |, |xn0+1|+ 1 }, then we

have |xn| ≤ M for all n ∈ N. Then by BWT, we know that (xn) has a conver-

gent sequence (xin)n∈N with limit a. It remains to prove lim
n→∞xn = a.

For any given ε > 0, there exists k1 > 0 such that |xn − xm| < ε/2 for all

n,m ≥ k1. Moreover, there exist k2 > 0 such that |xin − a| < ε/2 for all

n ≥ k2. Moreover, Take N to be the least ik in the set {k2, k2 + 1, · · · } with

k ≥ k1. So there exists m ∈ N such that im ≥ k2. Then for any n ≥ N, we have

|xn − a| ≤ |xn − xim |+ |xim − a| < ε/2 + ε/2 = ε.

( CCC⇒SC). Suppose that S is a nonempety subet of R, which is bounded

above. Let b1 be an upper bounded of S. As S 6= ∅, choose a1 ∈ S. Then

a1 ≤ b1. If a1 = b1 then supS = b1, nothing to be proved. Otherwise, a1 < b1.

Let I1 = [a1, b1], consider the midpoint m1 of I1 : if m1 is an upper bound of

S, define I2 = [a1,m1]; otherwise I2 = [m1, b1]. Similarly, we can define, by



means of mathematical induction, a sequence of closed interval In = [an, bn],

with |In+1| = |In|/2 and an ≤ an+1 ≤ bn+1 ≤ bn, and an ∈ S and bn is an

upper bound of S. In any case, if an = bn for some n ∈ N, we know that

supS = an, so nothing to be proved, hence we may assume that an < bn for

all n ∈ N.

Now we want to show that (an)n≥1 is a Cauchy sequence. For any ε > 0, there

exists n0 ∈ N such that |In0 | = |I1|/2n0 < ε. Then for any n ≥ m ≥ n0 we

have [am, an] ⊂ [am, bm] ⊂ [an0 , bn0 ]. It follows that |an − am| = |[am, an]| ≤
| [an0 , bn0 ] | = |In0 | = |I1|/2n0 < ε. Then by CCC, we know that (an) has

a convergent subsequence with limit a Because |an − bn| = |b1 − a1|/2n, the

corresponding subsequence of (bn) also converges to the same limit a.

Next we need to show a is the supremum of S. (i) First we will prove that a is

an upper bound of S. As bn is an upper bounded for S for all n ∈ N, so for any

fixed x ∈ S, we have x ≤ bn for all n ∈ N. Thus x ≤ lim
n→∞bn = a. In particular,

a is an upper bound of S. (ii) Next we will show a is the least upper bound

of S. For any ε > 0 there exist N ∈ N such that a − an = |an − a| < ε. In

particular, a− ε < an, where an ∈ S. Hence a = supS.

( SP ⇒ MCT ). Suppose that (xn) is a bounded montone sequence. WLOG,

we may assume that (xn) is increasing; otherwise consider (−xn) instead. Let

S = { xn | n ≥ 1 } be the set of values taken by this sequence. S is bounded

as so is (xn). Then by SP we know s = supS exists and is finite. Now we want

to prove that s = lim
n→∞xn. For any ε > 0, there exist an element xn0 ∈ S such

that xn0 > s− ε. Then for any n ≥ n0 we have |xn− s| = s−xn < s−xn0 < ε.

(MCT⇒NIT) Assume that { In | n ≥ 1 } be a family of intervals satisfying the

conditions (a) and (b) stated in NIT. Then (an) is bounded monotone sequence,

then by MCT, we know that the sequence an converges to a limit a as n →∞.

Then lim
n→∞bn = lim

n→∞[(bn−an)+ (an)] = lim
n→∞(bn−an)+ lim

n→∞(an) = 0+a = a.

As a = sup{ an | n ≥ 1 }, so we have an ≤ a for all n ∈ N. Similarly, a ≤ bn

for all n ∈ N. Hence a ∈ [an, bn] for all n ∈ N.

8 Functions

8.1 Relations

Definition. Let X and Y be two subsets in R, a relation R from X to Y is

a subset G(R) of X × Y , called the graph of the relation of R. Sometimes, we

identify the relation R with its graph G(R) in X × Y.

Let R be a relation from X to Y, then the subset D(R) = { x ∈ X | (x, y) ∈ R

for some y ∈ Y } of X is called the domain of the relation R; and the subset

Ran(R) = { y ∈ Y | (x, y) ∈ R for some x ∈ X} of Y is called the range of the

relation of R.

Definition. A function f from X to Y, denoted by f : X → Y, is a relation

from X to Y satisfying the following conditions:

1. If (x, y), (x, z) ∈ R then y = z, or equivalently

2. i.e. any two ordered pairs of R are the same if they both have the same

elements in the first entry.

If the relation R really satisfies the condition of a function, then for any (x, y) ∈
R, we call the element x in the first entry of the ordered pair the input value,

and call the element y in second entry the output value of x. We usually

denoted by f(x), which want to point out the dependence relation between y

and x.

Definition. A function f : X → Y from X to Y is called

1. injective or one-to-one if one of the following holds:

(a) if f(x1) = f(x2) then x1 = x2; or equivalently,

(b) if x1 6= x2, then f(x1) 6= f(x2).

2. surjective if the range Ran(R) = Y, or equivalently, if for any y ∈ Y, there

exists some x ∈ X such that f(x) = y.

3. bijective, if it is both injective and surjective.



4. Definition. Let f : X → Y and g : Y → Z be two functions. For any

x ∈ X, we denote y = f(x) and z = g(y). Define a new function h : X → Y

as follows: h(x) = z, where z = g(y) = g(f(x)). We usually denote h by

g ◦ f.

5. Theorem. Let f : X → Y be a bijective function, then there exists a

function g : Y → X so that g ◦ f = idX , and f ◦ g = idY .

Proof. Define g : Y → X as follows: for any y ∈ Y, because f is surjective,

there exist x ∈ X such that f(x) = y. In fact, such a x is unique because

f is injective. Hence define g(y) = x. In other words, g(y) = x if and only

if f(x) = y. It remains to show that (i) g ◦ f = idX , and (ii) f ◦ g = idY .

(i) For any x ∈ X, we have g ◦ f(x) = g(f(x)) = x.

(ii) For any y ∈ Y, we have f ◦ g(y) = f(g(y)) = y.

Both last equalities follows from the definition of g.

6. Let X ⊂ R and f, g : X → R be functions defined on X. Define functions:

f + g, f − g, f · g : X → R as follows: (i) (f + g)(x) = f(x) + g(x);

(ii) (f − g)(x) = f(x)− g(x); (iii) (f · g)(x) = f(x) · g(x) for all x ∈ X;

(iv) (f/g)(x) = f(x)/g(x) provided g(x) 6= 0 for all x ∈ X.

7. Definition. Let f : X → Y be a function, S be a subset of X. f is called

(a) (strictly) increasing on S if for all x > y ∈ S, we have f(x) > f(y).

(b) non-decreasing on S if for all x > y ∈ S, we have f(x) ≥ f(y).

(c) (strictly) decreasing on S if for all x > y ∈ S, we have f(x) < f(y).

(d) non-increasing on S if for all x > y ∈ S, we have f(x) ≤ f(y).

(e) monotone on S if any one of the condition holds.

8.2 Limits of Function

1. Definition. Let δ > 0, a ∈ R, we denote the set { x ∈ R | |x− a| < δ }
by B(x, δ) or Bδ(x), called an open ball of radius δ centered at a.

2. Definition. Let A ⊂ R be a non-empty subset of R. A point x ∈ R
is called an accumulation point or limit point of A if for any given ε >

0, the open interval (x − ε, x + ε) contains infinitely many points of E.

Equivalently A∩(x−ε, x+ε)\{x} 6= ∅. A point x ∈ A is called an isolated

point of A if there exists δ > 0 such that (x− δ, x + δ)∩A = {x}, i.e. the

open interval contains only one point x of A.

3. Definition. Let f : A → R be a real-valued function defined on A ⊂ R.

Let a ∈ A, then we say the limit of the function f at the point a ∈ A

equals to l, if the following is satisfied:

For any ε > 0, there exists δ > 0 such that | f(x) − l | < ε for any

x ∈ (a− δ, a + δ) ∩A \ {a}.
In this case, we write lim

x→a
f(x) = l.

Remark. If a is an isolated point A, then by definition, (a − δ, a + δ) ∩
A \ {a} = ∅ for some δ > 0, and hence the conditions is meaningless.

4. Properties of Limits. Let f, g : A → R be functions defined on the

same domain A. Suppose that the limits of f and g at the point a ∈ A is

l and m. Then

(a) lim
x→a

( f(x) + g(x) ) = l + m;

(b) lim
x→a

( f(x)− g(x) ) = l −m;

(c) lim
x→a

( c · f(x) ) = c · l;
(d) lim

x→a
( f(x) · g(x) ) = l ·m;

(e) lim
x→a

( f(x)
g(x) ) = l

m , provided that m 6= 0.

5. Definition. Let f : A → R be function defined on A, a ∈ A then f

is called to be continuous at a, if the limit lim
x→a

f(x) exists, and is equal

to f(a). Equivalently, for any given ε > 0, there exists δ > 0 such that

|f(x)− f(a)| < ε for all (a− δ, a + δ) ∩A.

f : A → R is called continuous on A if f is continuous at every point

a ∈ A.



6. Theorem. If f : A → R is continuous at a, there exists δ > 0 such that

f is bounded on a neighborhood U = B(a, δ) of a.

Remark. The result is just a local property of continuous function. How-

ever, f may not be bounded on the set A.

7. Theorem. (Dini) Let f : A → R be a function, a ∈ A. Then the limit of

the function f at a is equal to l if and only if lim
n→∞f(xn) = f(a), for any

sequence (xn) converging to a.

8. Theorem. Let f, g : R→ R be functions, x0 ∈ R. If f is continous at x0

and g is continuous at f(x0), then g ◦ f is a continuous at x0.

9. Theorem. Let f : (a, b) → R be a strictly increasing continuous function

on (a, b). Let J = f [I] be the image of I under f. Let g : J → I be the

inverse function of f. Prove that g is a continuous on J.

10. Definition. Let f : A → R be a function. f is called uniformly continuous

if for any ε > 0 there exists δ > 0 such that |f(x) − f(y)| < ε for any

x, y ∈ A and |x− y| < δ.

11. Definition. Let C ⊂ R, C is called to be a compact set if any open cover

of C has a finite subcover.
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