Contents

1	Pre	liminary Exercises	2
	1.1	Famous Inequalities	2
	1.2	Homework	3
	1.3	Harder Exercises	4
	1.4	Exercises of Mathematical Induction	5
2	Sup	premum and Infimum	6
	2.1	Examples	6
	2.2	Homework	6
	2.3	Limsup and Liminf of Bounded Sequences	7
3	Lin	it and Continuity	9
	3.1	Examples	9
	3.2	Method of finding limit	10
	3.3	Easy Exercise	10
4	Exe	ercises of Rudin's PMA	11
	4.1	The real and complex number systems	11
	4.2	Basic Topology	11
5	\mathbf{Tes}	ts and Quizzes	13
	5.1	Midterm and Final	13
	5.2	Tests and Quizzes	14
	5.3	Sample Final Examinations	16
	5.4	Problems	16
	5.5	Final Examination I	17
	5.6	Final Examination II	18
6	Rev	view Exercises	18
	6.1	Interval	18

6.2	Cauchy Criterion	19
6.3	Limits of Functions	19
6.4	Limits	20
6.5	True and False	21
6.6	Important points for review	21

1 Preliminary Exercises

- 1.1 Famous Inequalities
- 1. (Inequality of absolute value) Let a, b be real numbers, then

(a) $|x| < h \iff x \in (-h, h);$ (b) $||a| - |b|| \le |a + b| \le |a| + |b|;$ (c) $||a| - |b|| \le |a + b| \le |a| + |b|.$

- 2. Let $S = \{ \frac{a_1}{b_1}, \frac{a_2}{b_2}, \dots, \frac{a_n}{b_n} \}$, where $b_k > 0$ for all $k = 1, 2, \dots, n$. Then we have $\min S \leq \frac{a_1 + a_2 + \dots + a_n}{b_1 + b_2 + \dots + b_n} \leq \max S$.
- 3. (a) Let $n \ge 2$, and a_1, a_2, \dots, a_n be positive numbers, then $(1+a_1)(1+a_2)\dots(1+a_n) > 1 + (a_1 + \dots + a_n)$.
 - (b) Let $n \ge 2$, and a_1, a_2, \cdots, a_n be positive numbers all less than 1, then $(1-a_1)(1-a_2)\cdots(1-a_n) > 1-(a_1+\cdots+a_n)$.
- 4. If 0 < a < 1 and n is a natural number, then $1 + a + a^2 + \dots + a^n < \frac{1}{1-a}$.
- 5. (Bernoulli's Inequality) Suppose that a > 0 or -1 < a < 0, and $n \ge 2$ is an integer, then $(1 + a)^n > 1 + na$.
- 6. If $n \ge 2$ is an integer, then (a) $\left(1 + \frac{1}{n-1}\right)^{n-1} < \left(1 + \frac{1}{n}\right)^n < 3$; (b) $\left(1 + \frac{1}{n-1}\right)^n > \left(1 + \frac{1}{n}\right)^{n+1}$.
- 7. (AM-GM Inequality) Let a_1, a_2, \dots, a_n be any positive numbers, then $\sqrt[n]{a_1 a_2 \cdots a_n} \leq \frac{a_1 + a_2 + \cdots + a_n}{n}$. Equality holds iff $a_1 = \cdots = a_n$.
- 8. Let x > 0 and $0 < \alpha < 1$, then $x^{\alpha} \alpha x \leq 1 \alpha$.
- 9. Let a and b be positive numbers, and α, β be positive numbers satisfying $\alpha + \beta = 1$, then $a^{\alpha}b^{\beta} \leq \alpha \cdot a + \beta \cdot b$.

- 10. (Young's Inequality) Let a, b be positive numbers, and p, q be positive numbers such that $\frac{1}{p} + \frac{1}{q} = 1$, then $ab \leq \frac{a^p}{p} + \frac{b^q}{q}$.
- 11. (**Hölder's Inequality**) Let *n* be a positive integer, $a_i > 0, b_i > 0$ $(i = 1, 2, \dots, n)$, and *p*, *q* be positive numbers such that $\frac{1}{p} + \frac{1}{q} = 1$. Then

$$\sum_{i=1}^{n} a_{i}b_{i} \leq \left(\sum_{i=1}^{n} a_{i}^{p}\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} b_{i}^{q}\right)^{\frac{1}{q}}.$$
 Equality holds iff $\frac{a_{1}^{p}}{b_{1}^{q}} = \frac{a_{2}^{p}}{b_{2}^{q}} = \dots = \frac{a_{n}^{p}}{b_{n}^{q}}.$
If $0 , then $\left(\sum_{i=1}^{n} a_{i}b_{i}\right) \geq \left(\sum_{i=1}^{n} a_{i}^{p}\right)^{1/p} \left(\sum_{i=1}^{n} b_{i}^{q}\right)^{1/q}.$$

- 12. (**Minkowski's Inequality**) Let *n* be a positive integer, k > 1, and $a_i > 0, b_i > 0$ $(i = 1, 2, \dots, n)$, then $\left(\sum_{i=1}^n (a_i + b_i)^k\right)^{1/k} \le \left(\sum_{i=1}^n (a_i)^k\right)^{1/k} + \left(\sum_{i=1}^n (b_i)^k\right)^{1/k}.$
- 13. (Jensen's inequality) Let $f : (a,b) \to \mathbb{R}$ be a convex function, then $f(q_1x_1 + q_2x_2 + \dots + q_nx_n) \le q_1f(x_1) + q_2f(x_2) + \dots + q_nf(x_n)$, for all $q_i > 0$ satisfying $q_1 + q_2 + \dots + q_n = 1$, and $x_i \in (a,b)$ $(i = 1, 2, \dots, n)$.
- 14. (Cauchy Inequality) Let $x_1, x_2, \cdots, x_n, y_1, y_2, \cdots, y_n$ be real numbers, then $\left(\sum_{i=1}^n x_i y_i\right)^2 \leq \left(\sum_{i=1}^n x_i^2\right) \left(\sum_{i=1}^n y_i^2\right)$.
- 15. (**Power Mean inequality**) Let x_1, x_2, \dots, x_n be non-negative numbers, and $\alpha_1, \alpha_2, \dots, \alpha_n$ be positive number so that $\alpha_1 + \dots + \alpha_n = 1$, then $(x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n}) \leq \sum_{i=1}^n \alpha_i x_i$. Equality holds if and only if $x_1 = \dots = x_n$.
- 16. (**Rearrangement Inequality**) Let $a_1 \leq a_2 \leq \cdots \leq a_n$ and $b_1 \leq b_2 \leq \cdots \leq b_n$ be real numbers. If π is a permutation π of the set $\{1, 2, \cdots, n\}$, then $\sum_{j=1}^n a_j \cdot b_{n-j} \leq \sum_{j=1}^n a_j \cdot b_{\pi(j)} \leq \sum_{j=1}^n a_j \cdot b_j$. Equality holds if and only if $a_1 = a_n$ or $b_1 = b_n$.

17. (**Chebyshev Inequality**) Let
$$a_1 \leq a_2 \leq \cdots \leq a_n$$
 and $b_1 \leq b_2 \leq \cdots \leq b_n$
be real numbers, then $n \sum_{j=1}^n a_j b_{n-j} \leq \left(\sum_{j=1}^n a_j\right) \left(\sum_{j=1}^n a_j\right) \leq n \sum_{j=1}^n a_j b_j$.
Equality holds if and only if $a_1 = a_n$ or $b_1 = b_n$.
Hint: First prove that $\sum_{j=1}^n \sum_{k=1}^n (a_j - a_k)(b_j - b_k) \geq 0$.

1.2 Homework

- 1. Prove that S is bounded above if and only if -S is bounded below.
- 2. Give example that S is bounded above but not bounded below.
- 3. Suppose that $(x_j)_{1 \leq j \leq k}$ and $(y_j)_{1 \leq j \leq k}$ are two finite sequence of complex numbers, and α and $\beta \in \mathbb{C}$. Using the definition of summation Σ and induction, prove that

(a)
$$\sum_{j=1}^{k} (\alpha x_j + \beta y_j) = \alpha \sum_{j=1}^{k} x_j + \beta \sum_{j=1}^{k} y_j.$$

(b) If $x_j, y_j \in \mathbb{R}$ and $x_j \le y_j$ for all $1 \le j \le k$, then $\sum_{j=1}^{k} x_j \le \sum_{j=1}^{k} y_j.$

- 4. Let S be an non-empty subset of \mathbb{Z} , prove that
 - (a) If S is bounded above, then $\min S \in S$.
 - (b) If S is bounded below, then $\max S \in S$.
- 5. Suppose A and B are non-empty subsets of \mathbb{R} , define $A + B = \{ x + y \mid x \in A \text{ and } y \in B \}$.
 - (a) If $A \subset B$, prove that (i) $\sup A \leq \sup B$ and (ii) $\inf A \geq \inf B$.
 - (b) Prove: (i) sup(A + B) = sup A + sup B, if one of them is finite;
 (ii) inf(A + B) = inf A + inf B, if one of them is finite.

- 6. Prove that the complex field \mathbb{C} cannot be ordered, i.e. there does not exist any non-empty subset P playing the same role of positive numbers in \mathbb{R} .
- 7. Let a, b, c, d be rational numbers, and x is an irrational number such that $cx + d \neq 0$. Prove that $\frac{ax + b}{cx + d}$ is irrational if and only if $ad bc \neq 0$.
- 8. (a) If $x, y \in \mathbb{R}$ then $2xy \le x^2 + y^2$ and $4xy \le (x+y)^2$. Equalities hold if and only if x = y.
 - (b) If a, b are positive real numbers, and a + b = 1, then $(a + 1/a)^2 + (b + 1/b)^2 \ge 25/2$. When does the equality hold?
 - (c) If a_1, a_2, \dots, a_n are all positive real numbers, then $\left(\sum_{j=1}^n a_j\right) \left(\sum_{j=1}^n \frac{1}{a_j}\right) \ge n^2$, and equality holds if and only if $a_1 = a_2 = \dots = a_n$.
 - (d) If a, b, c are positive real numbers and a + b + c = 1, then $\left(\frac{1}{a} 1\right)\left(\frac{1}{b} 1\right)\left(\frac{1}{c} 1\right) \ge 8$, and equality holds if and only if a = b = c = 1/3.
 - (e) If a, b, c are positive real numbers, prove that $\left(\frac{a}{2} + \frac{b}{3} + \frac{c}{6}\right)^2 \leq \frac{a^2}{2} + \frac{b^2}{3} + \frac{c^2}{6}$, and equality holds if and only if a = b = c.
 - (f) If a_1, a_2, \dots, a_n and w_1, w_2, \dots, w_n are all positive real numbers with $\sum_{n=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$

$$\sum_{j=1}^{n} w_j = 1. \text{ Prove that } \left(\sum_{j=1}^{n} a_j w_j\right) \leq \sum_{j=1}^{n} a_j^2 w_j, \text{ and equality holds if and only if } a_1 = a_2 = \dots = a_n.$$

- 9. Prove that $\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdots \frac{2n-1}{2n} \le \frac{1}{\sqrt{3n+1}}$, and equality holds if and only if n = 1.
- 10. (a) For all $n \in \mathbb{N}$ we have $\sqrt{n+1} \sqrt{n} < \frac{1}{2\sqrt{n}} < \sqrt{n} \sqrt{n-1}$. Hint: $(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n}) = 1$.

(b) If $k \ (>1)$ is a positive integer, then $2\sqrt{k+1}-2 < \sum_{n=1}^{k} \frac{1}{\sqrt{n}} < 2\sqrt{k}-1$.

11. Let n be a positive integer, and $x \in \mathbb{R}$. Prove the following holds.

(a) If
$$-1 < x < 0$$
, then $(1+x)^n \le 1 + nx + \frac{n(n-1)}{2}x^2$
(b) If $x > 0$, then $(1+x)^n \ge 1 + nx + \frac{n(n-1)}{2}x^2$.

Hint: Compare Bernoulli's Inequality.

12. Prove that any positive rational r can be expressed in exactly one way in the form $r = \sum_{j=1}^{n} \frac{a_j}{j!}$, where a_1, a_2, \dots, a_n are integers such that $a_1 \ge 0$, $0 \le a_j < j$ for $2 \le j \le n$, and $a_n \ne 0$.

13. Show that $n! \leq \left(\frac{n+1}{2}\right)^n$.

- 14. Find the infimum and supremum of the set $S = \{2^{-k} + 3^{-m} + 5^{-n} \mid k, m, n \text{ are positive integers }\}.$
- 15. If $a, b, c \in \mathbb{C}$ such that |a| = |b| = |c| and a + b + c = 0, show that |a b| = |b c| = |c a|. What is the geometrical meaning?
- 16. For any complex numbers $a, b \in \mathbb{C}$, show that $|a+b|^2 + |a-b|^2 = 2(|a|^2 + |b|^2)$.
- 17. For any complex numbers $a, b \in \mathbb{C}$ such that $\operatorname{Re}(\overline{a} \cdot b) = 0$, show that show that $|a b|^2 = |a|^2 + |b|^2$. What is the geometrical meaning?
- 18. If $x, y \in \mathbb{R}$, and n is a positive integer, prove the following holds:

(a)
$$[x+y] \ge [x] + [y]$$
.
(b) $\left[\frac{[x]}{n}\right] = \left[\frac{x}{n}\right]$.
(c) $\sum_{k=0}^{n-1} \left[x + \frac{k}{n}\right] = [nx]$, where $[t]$ is the integral part of t .

1.3 Harder Exercises

- 1. Let $r_1, r_2 \in \mathbb{Q}$, define a sequence as follows: for any integer $n \ge 2$, we have $r_{n+1} = \frac{r_n + r_{n-1}}{2}$. Prove that (i) all the terms in $\{r_n\}_{n\ge 1}$ are rational; (ii) $\{r_n\}_{n\ge 1}$ is a Cauchy sequence.
- 2. For any given real number x, prove that there exists a unique integer n such that $n \le x < n + 1$. In this case, n is usually denoted by [x], called the *integral part* of x.
- 3. Let E be the set of all Cauchy sequences of rational numbers. Suppose that K is a non-empty subset of E, i.e. K is a family of Cauchy sequences of rational numbers. K is called an *ideal* of E, if the following two conditions are satisfied:
 - (i) For any two sequences $\{r_n\}$ and $\{s_n\}$, the sequence $\{r_n+s_n\}_{n\geq 1} \in K$;
 - (ii) For any two sequences $\{r_n\}$ and $\{s_n\}$, the sequence $\{r_n \cdot s_n\}_{n \ge 1} \in K$.

K is called *maximal ideal* of E, if it satisfies the following two conditions: (i) K is an ideal of E; (ii) any ideal containing K is E or K.

- (a) Prove that the set $K = \{ \{r_n\} \in E \mid \lim_{n \to +\infty} r_n = 0 \}$ is an ideal of E.
- (b) If A is an ideal of E such that $K \subset A$ and $K \neq A$. Let $\{s_n\} \in A \setminus K$. Prove that
 - i. There exists $\{r_n\} \in E$ such that $\{r_n + s_n\} \in A$ and for all $n \in \mathbb{N}$, $r_n + s_n \neq 0$ and $\{\frac{1}{r_n + s_n}\} \in E$.
 - ii. The constant sequence $\{1_n\} \in A$, where $1_n = 1$ for all $n \in \mathbb{N}$.
 - iii. K is a maximal ideal of K.
- 4. Determine the set of cluster points of the sets $A = \{ \frac{1}{n} + \frac{1}{m} \mid n, m \in \mathbb{N} \}$ and $B = \{ \frac{m}{nm+1} \mid n, m \in \mathbb{N} \}.$

1.4 Exercises of Mathematical Induction

1. Establish the following formula for all $n \in \mathbb{N}$, by means of Mathematical Induction Principle.

(a)
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2};$$

(b) $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6};$
(c) $\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4};$
(d) $\sum_{k=1}^{n} (a + (k-1)b) = \frac{n(2a + (n-1)d)}{2};$
(e) $\sum_{k=1}^{n} a \cdot r^k = a\frac{r^n - 1}{r - 1},$ where $r \neq 1.$

- 2. If r > -1 is a real number, use the mathematical Induction Principle t show that Bernoulli's inequality holds: $(1+r)^n \ge 1 + nr$ for any $n \in \mathbb{N}$.
- 3. Using Bernoulli's inequality to prove the following statements:
 - (a) If a > 1 is a real number, then $a^n \ge a$ for all $n \in \mathbb{N}$.
 - (b) If 0 < a < 1 is a real number, then $0 < a^n \le a$ for all $n \in \mathbb{N}$.
- 4. (i) If 0 < a < 1, prove that 0 < a < √a < 1.
 (ii) If a > 1, prove that 1 < √a < a.
- Let f: [a, b] → ℝ be an increasing function. Show that
 (i) f is injective, i.e. if f(x) = f(y), then x = y.
 (ii) If D = f[[a, b]], then inverse function f⁻¹: D → [a, b] is increasing.
- 2. Let $f: D \to \mathbb{R}$ be a bounded function, E be a non-empty subset of D. Prove the following:

(i) $\inf\{f(x) \mid x \in D\} \le \inf\{f(x) \mid x \in E\};$ (ii) $\sup\{f(x) \mid x \in D\} \ge \inf\{f(x) \mid x \in E\}.$

- 3. Let { x_n } be a bounded sequence, and define y_n = sup{ x_k | k = n, n + 1, ... } and x_n = inf{ x_k | k = n, n + 1, ... } for each n ∈ N. Verify that
 (i) the sequence {y_n} is bounded and non-increasing, and
 (ii) the sequence {z_n} is bounded and non-decreasing.
- 4. Show that the following sequence $\{x_n\}$ is monotone (non-decreasing or non-increasing) and bounded, respectively:
 - (a) $x_1 > 1$ and $x_{n+1} = 2 x_n^{-1}$; (b) $x_1 = \sqrt{2}$ and $x_{n+1} = \sqrt{2 + x_n}$; (c) $x_1 = \sqrt{2}$ and $x_{n+1} = \sqrt{2x_n}$; (d) $x_1 = 1$ and $x_{n+1} = (2x_n + 3)/4$.
- 5. Let 0 < a₁ < b₁ and a_{n+1} = √a_nb_n and b_{n+1} = a_{n+b_n}/2 for each n ∈ N.
 (i) Prove, by mathematical induction, that a_n < b_n for every n ∈ N.
 (ii) Prove that both {a_n} and {b_n} are monotone and bounded sequences.
- 6. (i) Modify the argument given in the example to show that there exists a real number, denoted by √3, satisfying (√3)² = 3.
 (ii) Prove that the real number √3 is an irrational number.
- 7. Let $f: D \to \mathbb{R}$ be a bounded function, $a \in \mathbb{R}$ Show that

(a)
$$\sup\{ a + f(x) \mid x \in D \} = a + \sup\{ f(x) \mid x \in D \}.$$

(b) $\inf\{ a + f(x) \mid x \in D \} = a + \inf\{ f(x) \mid x \in D \}.$

8. Let $f, g: D \to \mathbb{R}$ be two bounded functions with domain D. Show that

(a)
$$\inf\{ f(x) \mid x \in D \} + \inf\{ g(x) \mid x \in D \} \le \inf\{ f(x) + g(x) \mid x \in D \}.$$

(b) $\sup\{ f(x) \mid x \in D \} + \sup\{ g(x) \mid x \in D \} \ge \inf\{ f(x) + g(x) \mid x \in D \}.$

9. Let $f, g: D \to \mathbb{R}$ be functions, show that

$$\inf\{ f(x) + g(x) \mid x \in D \} \le \inf\{ f(x) \mid x \in D \} + \sup\{ g(x) \mid x \in D \}$$
$$\le \sup\{ f(x) + g(x) \mid x \in D \}$$

2 Supremum and Infimum

2.1 Examples

1. Find the solution sets:

(i) $S_1 = \{ x \in \mathbb{R} \mid |x - a| \le 2 \}$; and (ii) $S_2 = \{ x \in \mathbb{R} \mid |x^2 - a^2| \le 1$. And represent the solution S_i (i = 1, 2) in terms of unions of intervals.

- 2. Is the set $S = \{ \frac{x+1}{x+3} \in \mathbb{R} \mid x \in (0,1) \}$ an interval? Give your reason.
- 3. Find the solution set S of the inequality: -7 3x < 5x + 29.
- 4. Find the solution set S of the inequality: $\frac{2x-3}{x+2} \leq \frac{1}{3}$. And hence, prove that S is bounded, and determine $\sup S$ and $\inf S$.
- 5. Let $K = \{ 1/n \in \mathbb{R} \mid n = 1, 2, \dots \} \cup \{0\}$. Prove that K is compact directly from the definition, without using Heine-Borel theorem.
- 6. Give an example of an open cover of the segment (0, 1) which has no finite subcover.
- 7. (a) If A and B are disjoint closed sets in some metric space X, prove that they are separated.
 - (b) Prove the same for disjoint open sets.
 - (c) Fix $p \in X$, $\delta > 0$, define A to be the set of all $q \in X$ for which $d(p,q) < \delta$, and define B similarly, with > in place of < . Prove that A and B are separated.
 - (d) Prove that every connected metric space with at least two points is uncountable. Hint Use (c).

2.2 Homework

1. Let $S = \{ 1 - (-1)^n / n \mid n = 1, 2, \dots \}$. Find (i) sup S and (ii) inf S.

- 2. Show in detail that the set $A = [0, +\infty)$ has lower bounds but no upper bounds.
- 3. Let $S \subset \mathbb{R}$ such that $\sup S \in S$. If $u \notin S$, show that $\sup(S \cup \{s\}) = \max(s, \sup S)$.
- 4. Show that a non-empty finite set S of \mathbb{R} contains its supremum and infimum, i.e. $sup S \in S$ and $\inf S \in S$. (Hint: Use induction.) Does the converse hold?
- 5. Let S be a non-empty subset of \mathbb{R} . Show that $u \in \mathbb{R}$ is an upper bound of S if and only if the following is satisfied: for any real number t, if t < u, then $t \notin S$.
- 6. Let S be a non-empty subset of \mathbb{R} . Show that $u = \sup S$ if and only if for every positive integer n, the number u - 1/n is not an upper bound of S but the number u + 1/n is an upper bound of S.
- 7. Suppose that A and B are bounded subsets of \mathbb{R} , prove that $A \cup B$ is bounded and that $\sup(A \cup B) = \sup\{\sup A, \sup B\}$.
- 8. Give an example of a countable collection of bounded subsets of \mathbb{R} where (i) the union is bounded, and one where (ii) the union is unbounded.
- 9. Let S be a bounded set in \mathbb{R} and let S_0 be a non-empty subset of S. Show that $\inf S \leq \inf S_0 \leq \sup S_0 \leq \sup S$.
- 10. Let $a, b \in \mathbb{R}$ and S be a non-empty bounded set in \mathbb{R} . Let $aS = \{ as \mid s \in S \}$.
 - (a) If a > 0, prove that $\inf(aS) = a \inf S$ and $\sup(aS) = a \sup S$.

(b) If a < 0, prove that $\sup(aS) = a \inf S$ and $\inf(aS) = a \sup S$.

11. Let A and B be two bounded subset of \mathbb{R} . Let $A + B = \{ a + b \in \mathbb{R} \mid a \in A \text{ and } b \in B \}$. Prove that (i) $\sup(A + B) = \sup A + \sup B$; and (ii) $\inf(A + B) = \inf A + \inf B$.

- 12. Let X be a non-empty set and let $f : X \to \mathbb{R}$ be a function with bounded range, i.e. $\operatorname{ran}(f)$ is a bounded subset of R. Let $a \in \mathbb{R}$, show that (i) $\sup\{a + f(x) \mid x \in X\} = a + \sup\{f(x) \mid x \in X\};$ (ii) $\inf\{a + f(x) \mid x \in X\} = a + \inf\{f(x) \mid x \in X\}.$
- 13. Let X be a non-empty set, f, g: X → R be two functions with bounded ranges in R. Show that
 (i) sup{ f(x)+g(x) | x ∈ X } ≤ sup{ f(x) | x ∈ X }+sup{ g(x) | x ∈ X };
 (ii) inf{ f(x)+g(x) | x ∈ X } ≥ inf{ f(x) | x ∈ X }+inf{ g(x) | x ∈ X }.
- 14. Let X = Y = (0,1) be the unit interval in \mathbb{R} . Define $h: X \times Y \to \mathbb{R}$ by h(x,y) = 2x + y. Find

(a)
$$f(x) = \sup\{ h(x, y) \mid y \in Y \}$$
, and $\inf\{ f(x) \mid x \in X \}$.

(b) $g(x) = \inf\{ h(x,y) \mid y \in Y \}$, and $\sup\{ g(x) \mid x \in X \}$.

Compare the results obtained in both part.

- 15. Given any $x \in \mathbb{R}$ show that there exists a unique integer n such that $n-1 \leq x < n$.
- 16. If y > 0 show that there exist a natural number n such that $1/2^n < y$.
- 17. Modify the argument given in the notes to show that
 - (a) if a > 0, then there exists a positive real number z such that $z^2 = a$.
 - (b) if a > 0 and any positive integer n , then there exists a positive real number z such that $z^n = a$.
- 18. Prove that Q is dense in \mathbb{R} .
- 19. If u > 0 and x < y, show that there exists a rational number r such that x < ru < y. Hence the set $\{ ru \mid r \in \mathbb{Q} \}$ is dense in \mathbb{R} .

2.3 Limsup and Liminf of Bounded Sequences

- 1. Theorem. A sequence (x_n) is called *contractive* if there exists a constant C with 0 < C < 1 such that $|x_{n+2} x_{n+1}| \le C|x_{n+1} x_n|$ for all $n \in \mathbb{N}$. The number C is called the constant of the contractive sequence. Prove that contractive sequence is Cauchy, and hence is convergent.
- 2. Stolz's Theorem. Let (y_n) be a strictly increasing sequence, and $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = 0. \text{ If } \lim_{n \to \infty} \frac{x_n - x_{n+1}}{y_n - y_{n+1}} \text{ exists (finite or } \pm \infty \text{), then}$ $\lim_{n \to \infty} \frac{x_n}{y_n} \text{ exists and } \lim_{n \to \infty} \frac{x_n}{y_n} = \lim_{n \to \infty} = \frac{x_n - x_{n+1}}{y_n - y_{n+1}}.$
- 3. (Limit Point) Let $E \subset \mathbb{R}$, then the followings are equivalent:
 - (a) a is an accumulation point (limit point) of the set E.
 - (b) For any given $\varepsilon > 0$, the open interval $(a \varepsilon, a + \varepsilon)$ contains infinitely many points of E.
 - (c) For any given $\varepsilon > 0$, the punctured open interval $(a-\varepsilon, a+\varepsilon)$ contains at least a point of E.
 - (d) There exists a sequence $\{x_n\} \subset E$ such that $x_n \neq x_m$ whenever $n \neq m$, and that $\lim_{k \to \infty} x_n = a$.
- 4. **Definition**. Given a bounded sequence (x_n) , let $A = \{x_n \mid n = 1, 2, \dots\}$ be the set of all the values taken by the terms of (x_n) . Define $\lim_{n \to \infty} x_n = \lim_{n \to \infty$
 - (a) For any $\varepsilon > 0$, there exists infinitely many n such that $x_n > \overline{a} \varepsilon$.
 - (b) For any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $x_n < \overline{a} + \varepsilon$ for all $n \ge N$.
 - (c) For any $\varepsilon > 0$, there exists infinitely many n such that $x_n < \underline{a} + \varepsilon$.
 - (d) For any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $x_n > \underline{a} \varepsilon$ for all $n \ge N$.
- 5. Let $E \subset \mathbb{R}$, $\beta \notin E$. Then $\beta = \sup E$ if and only if it any one of the following conditions is satisfied:

(i) $x < \beta$ for all $x \in E$;

- (ii) There exists an increasing sequence (x_n) such that $\lim_{n \to \infty} x_n = \beta$.
- 6. Let (x_n) be a bounded sequence. Prove that the following are equivalent:¹
 - (a) $\beta = \lim_{n \to \infty} \sup\{ x_k \mid k \ge n \}$
 - (b) For any ε > 0, there are only finitely many terms of the sequence (x_n) greater than β + ε, and there are infinitely many terms of the sequence (x_n) greater β - ε.
 - (c) There exist a subsequence (x_{n_k}) of the sequence (x_n) with $\lim_{n\to\infty} x_{n_k} = \beta$, and for any convergent subsequence (x_{j_k}) of (x_n) with limit β' , we have $\beta' \leq \beta$.
- 7. Suppose that (x_n) , (y_n) are bounded sequence, prove that

(a) (i)
$$\underline{\lim} (-x_n) = -\overline{\lim} x_n$$
; (ii) $\overline{\lim} (-x_n) = -\underline{\lim} x_n$;

- (b) For any subsequence (x_{n_k}) of (x_n) , we have
 - (i) $\lim_{k \to \infty} (x_{n_k}) \le \lim x_n$ (ii) $\overline{\lim} (x_{n_k}) \le \overline{\lim} x_n$
- (c) If $x_n \leq y_n$ for all $n \in \mathbb{N}$, then
 - (i) $\lim_{k \to \infty} x_n \leq \lim_{k \to \infty} y_n$, and (ii) $\lim_{k \to \infty} x_n \leq \lim_{k \to \infty} y_n$.

(d)
$$\lim_{k \to \infty} x_n + \lim_{k \to \infty} y_n \le \lim_{k \to \infty} (x_n + y_n) \le \begin{cases} \lim_{k \to \infty} x_n + \lim_{k \to \infty} y_n; \\ \lim_{k \to \infty} x_n + \lim_{k \to \infty} y_n. \end{cases}$$

(e) If $x_n \ge 0$ and $y_n \ge 0$ for all $n \in \mathbb{N}$, then

$$\underbrace{\lim_{k \to \infty} x_n \cdot \lim_{k \to \infty} y_n}_{k \to \infty} \leq \underbrace{\lim_{k \to \infty} (x_n \cdot y_n)}_{k \to \infty} \leq \begin{cases} \underbrace{\lim_{k \to \infty} x_n \cdot \lim_{k \to \infty} y_n}_{k \to \infty} \\ iim_{k \to \infty} x_n \cdot \underline{\lim_{k \to \infty} y_n} \end{cases} \leq \underbrace{\lim_{k \to \infty} (x_n \cdot y_n)}_{k \to \infty} \leq \underbrace{\lim_{k \to \infty} x_n \cdot \lim_{k \to \infty} y_n}_{k \to \infty} .$$

1数学分析:学习指导

- 8. Suppose that (x_n) is a sequence such that $0 \le x_{n+m} \le x_n + x_m$ for all $n, m \in \mathbb{N}$.
 - (a) Prove that the sequence $\{\frac{x_n}{n}\}$ converges.
 - (b) Prove that the sequence $\{x_n\}$ converges.
- 9. Suppose that $\{x_n\}$ is a bounded sequence, and that for any given $\varepsilon > 0$ and $n \in \mathbb{N}$, there exists $N \in \mathbb{N}$ such that $x_n < x_m + \varepsilon$ for all $n \ge N$. Prove that $\{x_n\}$ converges.
- 10. (a) Let $\{x_n\}$ be a sequence of positive numbers. If $\overline{\lim}_{k\to\infty} x_n \cdot \overline{\lim}_{k\to\infty} \frac{1}{x_n} = 1$, show that $\{x_n\}$ converges.
 - (b) Let $x_1 > 0$ and define $x_{n+1} = 1 + \frac{1}{x_n}$ for all $n \ge 1$. Prove that $\{x_n\}$ converges and find its limit.
- 11. Suppose that $\{x_n\}$ be a bounded sequence, and $\lim_{k \to \infty} (x_n + 2x_{2n}) = 1$, show that $\lim_{k \to \infty} x_n = \frac{2}{3}$.
- 12. Let $\{x_n\}$ be a sequence, and suppose that three of its subsequences $\{x_{2k}\}, \{x_{2k+1}\}, \{x_{3k}\}$ converge. Prove that $\{x_n\}$ is convergent.²
- 13. Suppose that $\lim_{n\to\infty} x_n = +\infty$, prove that the sequence has a minimum.
- 14. Let $\{x_n\}$ be a monotone sequence such that $\lim_{n \to \infty} \frac{x_1 + x_2 + \dots + x_n}{n} = a$. Prove that $\lim_{n \to \infty} x_n = a$.
- 15. Let $x_1 = a > 0$, $x_{n+1} = \frac{a}{1+x_n}$ for all $n \in \mathbb{N}$. Prove that $\{x_n\}$ converges and find its limit.
- 16. Suppose that $x_1 > \sqrt{a}$ where a > 1, and define $x_{n+1} = \frac{a+x_n}{1+x_n}$ for all $n \in \mathbb{N}$. Prove that $\{x_n\}$ converges and find its limit.

² p.79 数学分析:学习指导

- 17. Let $x_1 = a$, $x_2 = b$ and $x_{n+1} = \frac{x_n + x_{n-1}}{2}$ for $n = 2, 3, \cdots$. Prove that $\{x_n\}$ converges and find its limit.
- 18. Let $x_1 = \log a$ (a > 0), and $x_{n+1} = x_n + \log(a x_n)$ for $n \in \mathbb{N}$. Prove that $\{x_n\}$ converges and find its limit.
- 19. Suppose that sequence $\{x_n\}$ satisfies $0 < x_n < 1$ and $(1 x_n)x_{n+1} > \frac{1}{4}$ for all $n \in \mathbb{N}$. Prove that $\{x_n\}$ converges and find its limit.
- 20. Suppose that $\{x_n\}$ is a bounded divergent sequence, prove that there exist two subsequences of $\{x_n\}$ converge to two distinct limits.
- 21. Let $\{x_n\}$ and $\{y_n\}$ be two sequences such that $y_{n+1} = x_n + ax_{n+1}$ for all $n \in \mathbb{N}$.
 - (a) If |a| > 1, prove that $\{y_n\}$ converges if $\{y_n\}$ converges.
 - (b) If $|a| \leq 1$, does the result above still hold?
- 22. Let $f : [0,1] \to [0,1]$ be a continuous function, and $x_1 \in [0,1]$. Define $x_{n+1} = f(x_n)$ for all $n \in \mathbb{N}$. Prove that $\{x_n\}$ converges if and only if $\lim_{k\to\infty} (x_{n+1} x_n) = 0.$

3 Limit and Continuity

- 1. Let $x_0 \in \mathbb{R}$ and $f : \mathbb{R} \to \mathbb{R}$ be a function such that $f(x) \ge 0$ for all $x \in \mathbb{R}$, and $\lim_{x \to x_0} f(x) = A$. Prove that (i) $\lim_{x \to x_0} \sqrt{f(x)} = \sqrt{A}$. (ii) If A > 0, then $\lim_{x \to x_0} \frac{1}{(f(x))^2} = \frac{1}{A^2}$.
- 2. Let $f: [0, +\infty) \to \mathbb{R}$ be a uniformly continuous function. Prove that if $\alpha > 0$, then $\lim_{x \to +\infty} \frac{f(x)}{x^{1+\alpha}} = 0$
- 3. Let $(A_n)_{n \in \mathbb{N}}$ be a family finite subset of [0,1], and that $A_n \cap A_m = \emptyset$. Define a function $f : [0,1] \to \mathbb{R}$ as follows:

- $f(x) = \begin{cases} \frac{1}{n} & \text{if } x \in A_n \text{ for some } n \in \mathbb{N}; \\ 0 & \text{if } x \in [0,1] \setminus \bigcup_{n=1}^{\infty} A_n. \end{cases}$ Show that for any $x_0 \in [0,1]$, then $\lim_{x \to x_0} f(x) = 0.$
- 4. Let $f : [a, b] \to \mathbb{R}$ be a strictly increasing function, and $\{x_n\}$ be a sequence such that $a < x_n < b$ for all $n \in \mathbb{N}$. If $\lim_{n \to \infty} f(x_n) = f(a)$, prove that $\lim_{k \to \infty} x_n = a$.
- 5. Suppose that $f : [a, b] \to \mathbb{R}$ be an unbounded function, prove that $\exists x_0 \in [a, b]$ such that the function f is unbounded on any neighborhood of x_0 .
- 6. Let $f, g : [a, b] \to \mathbb{R}$ be continuous functions, f is monotonic, and there exists a sequence $\{x_n\}_{n\geq 1} \subset [a, b]$ such that $g(x_n) = f(x_{n+1})$ for all $n \geq 1$. Prove that there exists $x_0 \in [a, b]$ such that $f(x_0) = g(x_0)$.
- 7. Let I be a bounded interval, $f: I \to \mathbb{R}$ is uniformly continuous if and only if $\{f(x_n)\}_{n \in \mathbb{N}}$ is Cauchy whenever $\{x_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence in I.³
- 8. A function $f : \mathbb{R} \to \mathbb{R}$ is said to be Lipschtiz, if there exists a constant 0 < L < 1 such that $|f(x) f(y)| \leq L|x y|$, for any $x, y \in \mathbb{R}$. Prove that there exists a unique $x_0 \in \mathbb{R}$ such that $f(x_0) = x_0$.

3.1 Examples

- 1. Let *a* be the finite limit of the sequence $\{x_n\}$, prove that $\lim_{n \to \infty} \frac{x_1 + x_2 + \dots + x_n}{n} = a$. Does the conclusion hold if the limit *a* is not finite?
- 2. Suppose that $\{p_k\}$ is a sequence of positive real numbers, and that $\lim_{n \to \infty} \frac{p_n}{p_1 + p_2 + \dots + p_n} = 0$, and $\lim_{n \to \infty} a_n = a$. Show that

$$\lim_{n \to \infty} \frac{p_1 a_1 + p_2 a_2 + \dots + p_n a_n}{p_1 + p_2 + \dots + p_n} a_n$$

³p.86.数学分析:学习指导

- 3. Let $\{x_n\}$ be a sequence of real numbers such that $\lim_{n \to \infty} (x_n x_{n-2}) = 0$. Prove that $\lim_{n \to \infty} \frac{x_n - x_{n-1}}{n} = 0$.
- 4. Starting from the first definition of limit, prove that $\lim_{n \to \infty} \sqrt{\frac{7}{16x^2 9}} = 1$.
- 5. Prove that the limit $\lim_{n\to\infty} \sin n$ does not exist.
- 6. Let x_0 be a real number, and I be a neighborhood of x_0 possibly not containing $x_0, f: I \to \mathbb{R}$ be a function defined on I satisfying the following condition:

If $\{x_n\}$ is a sequence in I such that $\lim_{n \to \infty} x_n = x_0$ and satisfying $0 < |x_{n+1} - x_0| < |x_n - x_0|$, then we have $\lim_{n \to \infty} f(x_n) = a$. Show that $\lim_{x \to x_0} f(x) = a$.

- 7. Given any sequence $\{x_n\}$ of real numbers, prove that there exists a monotonic subsequence (but not necessarily strictly monotonic).
- 8. Establish the following limits by means of εN definition: (a) $\lim_{n \to \infty} \sqrt[n]{n} = 1$; (b) $n^3 q^n = 0$ (|q| < 1); (c) $\lim_{n \to \infty} \frac{\log n}{n^2} = 0$.
- 9. Suppose that f(x), g(x) are defined in some neighborhood, and that g(x) > 0, $\lim_{x \to 0} \frac{f(x)}{g(x)} = 1$. Suppose that $\{a_{mn}\}$ is a double sequence of real numbers satisfying the following condition: $\forall \varepsilon > 0$, $\exists N(\varepsilon) > 0$ such that for all $n > N(\varepsilon)$ and $m = 1, 2, \dots n$, we have $|a_{mn}| < \varepsilon$. Suppose that a_{mn} are all non-zero, prove that

$$\lim_{n \to \infty} \sum_{m=1}^{n} f(a_{mn}) = \lim_{n \to \infty} \sum_{m=1}^{n} g(a_{mn})$$

as long as the right limit exists.

10. Show that
$$\lim_{n \to \infty} \sum_{i=1}^{n} \left(\sqrt[3]{1 + \frac{i}{n^2}} - 1 \right) = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{i}{3n^2} = \frac{1}{6}$$
, and determine the limit $\lim_{n \to \infty} \sum_{i=1}^{n} (a^{\frac{i}{n^2}} - 1)$, for $a > 0$.

- 11. Suppose that $\{a_n\}_{n\geq 1}$ is a sequence of real numbers such that $\lim_{n\to\infty} \frac{a_1+a_2+\cdots+a_n}{n} = a < +\infty$, prove that $\lim_{n\to\infty} \frac{a_n}{n} = 0$.
- 12. Let $\{a_n\}$ be a sequence of positive numbers and there exists C > 0 such that $a_n \leq Ca_m$ for all m < n. Suppose that there exists a subsequence in $\{a_n\}$ converging to 0. Prove that $\lim_{n \to \infty} a_n = 0$.

3.2 Method of finding limit

1. Elementary transformation. One can use the elementary methods to transform or to simplify the analytic formula of a_n , and eventually obtain a more compact formula.

(a)
$$x_n = \cos \frac{x}{2} \cos \frac{x}{2^2} \cos \frac{x}{2^3} \cdots \cos \frac{x}{2^n}$$

(b) $x_n = \frac{3}{2} \cdot \frac{5}{4} \cdot \frac{17}{16} \cdots \frac{2^{2n} + 1}{2^{2n}}$
(c) $x_n = \sum_{i=1}^n \frac{1}{\sqrt{1^3 + 2^3 + \dots + i^3}}$

3.3 Easy Exercise

Let (x_n) and (y_n) be two sequences of real numbers. Suppose that $\lim_{n \to \infty} x_n = a$ and $\lim_{n \to a} y_n = b$. Let $c \in \mathbb{R}$, and $k \in \mathbb{Z}$. Prove that

- 1. $\lim_{n \to \infty} (x_n + y_n) = a + b;$
- 2. $\lim_{n \to \infty} (x_n y_n) = a b;$
- 3. $\lim_{n \to \infty} cx_n = ca;$
- 4. $\lim_{n \to \infty} x_n \cdot y_n = ab;$
- 5. $\lim_{n \to \infty} x_n^k = a^k;$
- 6. $\lim_{n \to \infty} x_n / y_n = a/b$, if $b \neq 0$ and $y_n > 0$ for all $n \ge 1$.
- 7. $\lim_{n \to \infty} \sqrt{x_n} = \sqrt{a}$, if a > 0 and $x_n > 0$ for all $n \ge 1$.

4 Exercises of Rudin's PMA

- 4.1 The real and complex number systems
- 1. If r is a non-zero rational and x is irrational, prove that r + x and $r \cdot x$ are irrational.
- 2. Prove that there is no rational number whose square is 12.
- 3. Let *E* be a non-empty subset of an ordered set; suppose α is a lower bound of *E* and β is an upper bound of *E*. Prove that $\alpha \leq \beta$.
- 4. Let A be a non-empty set of real numbers which is bounded below. Let -A be the set of all number -x, where $x \in A$. Prove that $\inf A = -\sup(-A)$.

5. Fix b > 1.

- (a) If m, n, p, q are integers, n > 0, q > 0, and r = m/n = p/q, prove that $(b^m)^{1/n} = (b^p)^{1/q}$. Hence it makes sense to define $b^r = (b^m)^{1/n}$.
- (b) Prove that $b^{r+s} = b^r \cdot b^s$ if r and s are rational.
- (c) If x is real, define B(x) to be the set b^t , where t is rational and $t \leq x$. Prove that $b^r = \sup B(r)$ when r is rational. Hence it makes sense to define $b^x = \sup B(x)$ for every $x \in \mathbb{R}$.
- (d) Prove that $b^{x+y} = b^x \cdot b^y$ for all real x and y.
- 6. Fix b > 1, y > 0, and prove that there is a unique real x such that $b^x = y$, by completing the following outline:
 - (a) For any positive integer $n, b^n 1 \ge n(b-1)$.
 - (b) Hence $b 1 \ge n(b^{1/n} 1)$.
 - (c) If t > 1 and n > (b-1)/(t-1), then $b^{1/n} < t$.
 - (d) If w is such that $b^w < y$, then $B^{w+1/n} < y$ for sufficiently large n; to see this, apply part (c) with $t = y \cdot b^{-w}$.

- (e) If $b^w > y$, then $b^{w-1/n} > y$ for sufficiently large n.
- (f) Let A be the set of all w such that $b^2 < y$, and show that $x = \sup A$ satisfying $b^x = y$.
- (g) Prove that this x is unique.
- 7. Prove that no order can be defined in the complex field that turns it into an ordered field. Hint: -1 is a square.
- 8. Suppose z = a + bi and w = c + di. Define z < w if a < c, and also if a = c but b < d. Prove that this turns the set of all complex numbers into an ordered set. Does this ordered set have the least upper bound property?

4.2 Basic Topology

- 1. Prove that the empty set \emptyset is a subset of every set.
- 2. A complex number z is said to be algebraic if there are integers a_0, a_1, \dots, a_n , not all zero, such that $a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0 = 0$. Prove that the set of all algebraic numbers is countable. Hint: For every positive integer N there are only finitely many equations with $n + |a_0| + |a_1| + \dots + |a_n| = N$.
- 3. Prove that there exist real numbers which are not algebraic.
- 4. Is the set of all irrational real numbers countable?
- 5. Construct a bounded set of real numbers with exactly three limit points.
- 6. Let E' be the set of all limit points of a set $E \subset \mathbb{R}$. Prove that E' is closed. Prove that E and \overline{E} have the asme limit points. (Recall the closure $\overline{E} = E \cup E'$.) Do E and E' always have the same limit points?
- 7. Let $A_1, A_2, A_3 \cdots$, be a sequence of subsets of a metric space (X, d).

(a) If
$$B_n = \bigcup_{i=1}^n A_i$$
, prove that $\overline{B_n} = \bigcup_{i=1}^n \overline{A_i}$, for $i = 1, 2, 3, \cdots$.

- (b) If $B_n = \bigcup_{i=1}^{\infty} A_i$, prove that $\overline{B_n} \supset \bigcup_{i=1}^{\infty} \overline{A_i}$. Show, by an example, that this conclusion can be proper.
- 8. Is every point of every open $E \subset \mathbb{R}^2$ a limit point of E? Answer the same question for closed set in \mathbb{R}^2 .
- 9. Let E° denote the set of all interior points of a set E. Recall a point x is called an interior of E if there exists $\varepsilon > 0$ such that $B(x, \varepsilon) \subset E$.
 - (a) Prove that E° is always open.
 - (b) Prove that E is open if and only if $E^{\circ} = E$.
 - (c) If $G \subset E$ and G is open, prove that $G \subset E^{\circ}$.
 - (d) Prove that the complement of E° is the closure of the complement of E.
 - (e) Do E and \overline{E} always have the same interiors?
 - (f) Do E and E° always have the same closures?
- 10. Let X be an infinite set. For any $p, q \in X$ define $d(p,q) = \begin{cases} 1 & \text{if } p \neq q; \\ 0 & \text{if } p = q. \end{cases}$ Prove that this is a metric on X. Which subset of the resulting metric space are open? Which are closed? Which are compact?
- 11. For $x, y \in \mathbb{R}^1$, define $d_1(x, y) = (x y)^2$; $d_2(x, y) = \sqrt{|x y|}$ $d_3(x, y) = |x^2 y^2|$; $d_4(x, y) = |x 2y|$; $d_5(x, y) = \frac{|x y|}{1 + |x y|}$. Determine, for each of these, whether it is a metric or not.
- 12. Let $K \subset \mathbb{R}^1$ consists of 0 and the number 1/n, for $n = 1, 2, \cdots$. Prove that K is compact directly from the definition (without using Heine-Borel theorem).
- 13. Construct a compact set of real numbers whose limit points form a countable set.

- 14. Give an example of an open cover of the segment (0, 1) which has no finite subcover.
- 15. Show that the following theorem does not hold (in \mathbb{R}^1 for example) if the word "compact" is replaced by " closed" or by " bounded" alone.

If $\{K_{\alpha}\}$ is a collection of compact subset of a metric space X such that the intersection of every finite subcollection of $\{K_{\alpha}\}$ is non-empty, then $\bigcap_{\alpha} K_{\alpha}$ is non-empty.

- 16. Let \mathbb{Q} be the set of all rational numbers, define d(p,q) = |p-q| for all $p, q \in \mathbb{Q}$. Let E be the set of all $p \in \mathbb{Q}$ such that $1 < p^2 < 3$. Show that E is closed and bounded in \mathbb{Q} , but that E is not compact. Is E open in \mathbb{Q} ?
- 17. Let E be the set of all $x \in [0, 1]$ whose decimal expansion contains only the digits 4 and 7. Is E countable? Is E dense in [0, 1]? Is E compact? Is E prefect?
- 18. Is there a non-empty prefect set in \mathbb{R}^1 which contains no rational numbers?
- 19. (a) If A and B are disjoint closed sets in some metric space, prove that they are separated.
 - (b) Prove that the same for disjoint open sets.
 - (c) Fix $p \in X$, $\delta > 0$, define A to be the set of all $q \in X$ for which $d(p,q) < \delta$, define B similarly, with > in place of < . Prove that A and B are separated.
 - (d) Prove that every connected metric space with at least two points is uncountable. Hint: Use (c).

5 Tests and Quizzes

5.1 Midterm and Final

- 1.1 Let x be a real number, and let n, m be natural numbers. Without using any of the exponent laws (other than the definition of exponentiation), show that $x^{n+m} = x^n \cdot x^m$. (Hint: mathematical induction.)⁴
- 1.2 Let $(a_n)_{n\geq 0}$ be a sequence of real numbers, such that $a_{n+1} > a_n$ for each natural number. Prove that $a_n > a_m$ for all n > m.
- 1.3 Let A, B be finite sets. Show that $A \cup B$ and $A \cap B$ are also finite sets, and $n(A) + n(B) = n(A \cup B) + n(A \cap B)$, where n(X) denotes the number of elements in X.
- 1.4 Let $(a_n)_{n\geq 0}$ be a sequence of rational numbers which is bounded. Let $(b_n)_{n\geq 0}$ be another sequence of rational numbers which is equivalent to $(a_n)_{n\geq 0}$. Show that the sequence $(b_n)_{n\geq 0}$ is bounded.
- 1.5 Let $E \subset \mathbb{R}$ be non-empty, and suppose that E has a least upper bound M. Let $-E = \{ -x \in \mathbb{R} \mid x \in E \}$. Show that $\inf(-E) = -M$.
- 2.1 Let $(a_n)_{n\geq 0}$ be a sequence of real numbers which converges to 0, i.e. $\lim_{n\to\infty} a_n = 0$. Show that the series $\sum_n (a_n - a_{n+1})$ is conditionally convergent, and converges to a_0 .

(Hint: First work out what the partial sums $\sum_{n=0}^{N} (a_n - a_{n+1})$ should be, and prove your assertion using induction.)

2.2 Let $\sum a_n$ be an absolutely convergent series of real numbers. Let $f : \mathbb{N} \to \mathbb{N}$ be an increasing function (i.e. f(n+1) > f(n) for for all $n \in \mathbb{N}$). Show that $\sum_n a_{f(n)}$ is also an absolutely convergent series.

(Hint: try to compare each partial sum of $\sum_n a_{f(n)}$ with a (slightly different) partial sum of $\sum_n a_n.$)

- 2.3 A point x is called an adherent point of a subset S of \mathbb{R} if for any $\varepsilon > 0$, the interval $(x - \varepsilon, x + \varepsilon) \cap S \neq \emptyset$. If S is bounded, show that $\sup E$ is an adherent point of E, and is also an adherent point of $\mathbb{R} \setminus E$.
- 2.4 Let X, Y, Z be subsets of \mathbb{R} . Let $f : X \to Y$ be a function which is uniformly continuous on X, and let $g : Y \to Z$ be a function which is uniformly continuous on Y. Show that the function $g \circ f : X \to Z$ is uniformly continuous on X.
- 2.5 Let $f : [0,1] \to [0,1]$ be a continuous function. Show that there exists a real number $c \in [0,1]$ such that f(c) = c. (Hint: Apply the intermediate value theorem to the function f(x) = x.)
- 3.1 Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function whose derivative $f' : \mathbb{R} \to \mathbb{R}$ is a bounded function. Show that f is uniformly continuous. (Hint: use the mean-value theorem to get some sort of upper bound on |f(x) - f(y)| for $x, y \in \mathbb{R}$.)
- 3.2 Let $\sum_{n=0}^{\infty} a_n$ be an absolutely convergent series of real numbers such that $\sum_{n=0}^{\infty} |a_n| = 0$. Show that $a_n = 0$ for every natural number n.
- 3.2 Let $f : [0, +\infty) \to \mathbb{R}$ be a non-negative, monotone decreasing function Suppose that there exists a number M > 0 such that $\int_{[0,N]} f(x) dx \leq M$ for all $N \in \mathbb{N}$. Show that the sum $\sum_{n=1}^{\infty} f(n)$ is convergent. Hint: compare the sum $\sum_{n=1}^{N} f(n)$ and the integral $\int_{[0,N]} f(x) dx$?
- 3.4 Let X be a finite subset of \mathbb{R} . Show that $\overline{X} = X$, i.e. the closure of X is the same as X itself.
- 3.5 Let a < b be real numbers, and let $f : [a, b] \to \mathbb{R}$ be a Riemann integrable function. Let $g : [-b, -a] \to \mathbb{R}$ be defined by g(x) = f(-x). Show that g is also Riemann integrable and $\int_{[-b, -a]} g(x) dx = \int_{[a, b]} f(x) dx$.

⁴Taken from Tao's 131-A

3.6 Let a < b be real numbers, and let $f : [a,b] \to \mathbb{R}$ be a continuous, non-negative function (so $f(x) \ge 0$ for all $x \in [a,b]$). Suppose that $\int_{[a,b]} f(x)dx = 0$. Show that f(x) = 0 for all $x \in [a,b]$. (Hint: argue by contradiction.)

5.2 Tests and Quizzes

This is a closed book examination, no notes are allowed. You have 3 hours to complete it.⁵

- 1. Prove Rolle's Theorem: If f is a continuous on [a, b] and differentiable on (a, b), with f(a) = f(b), then there exists $c \in (a, b)$ such that f'(c) = 0.
- 2. Prove that if f is Lebesgue integrable on [a, b], then so is |f|, and then $\left|\int_{a}^{b} f(x)dx\right| \leq \int_{a}^{b} |f(x)|dx.$
- 3. Prove the intermediate value theorem: If f is continuous on [a, b] and f(a) < f(b), then f takes every value between f(a) and f(b), i.e. for any $d \in [f(a), f(b)]$ there exists $c \in [a, b]$ such that f(c) = d.
- 4. Let $f(x) = 3x^2 + 7x + 3$ be a function defined on \mathbb{R} . Given any $\varepsilon > 0$, find a (specific) $\delta > 0$ (depending on ε) such that $|f(x) - f(0)| < \varepsilon$ whenever $|x| < \delta$.
- 5. Determine with reason whether this series $\sum_{n=1}^{\infty} \frac{(-1)^n n^{(n+1)/n}}{n!}$ converges.
- 6. Show that there exists some constant K independent of n such that $0 < \frac{1}{n} \frac{1}{\sqrt[3]{n^3 + 1}} \leq \frac{K}{n^4}$.
- 7. (a) Show that in any metric space, the limit of a convergent sequence is unique, i.e. if $x_n \to \alpha$ and $x_n \to \beta$, then $\alpha = \beta$.

- (b) Show that the following two definitions of continuity of a function $f: (X, \rho) \to (Y, \sigma)$ are equivalent:
 - i. To any $x_0 \in X$ and $\varepsilon > 0$ there corresponds $\delta > 0$ such that $\rho(x, x_0) < \delta$ implies $\sigma(f(x), f(x_0)) < \varepsilon$.
 - ii. For any open subset V in (Y, σ) , the inverse image $f^{-1}[V] = \{ x \in X \mid f(x) \in V \}$ is open in (X, ρ) .
- 8. Recall the definition $\limsup x_n = \limsup_{n \to \infty} \sup \{ x_k \mid k \ge n \}$. Prove the following:
 - (a) If $\{x_n\}$, $\{y_n\}$ are bounded sequences, then $\liminf(x_n + y_n) \leq \liminf x_n + \limsup y_n$.
 - (b) Give a counterexample to show that $\liminf (x_n + y_n) \leq \liminf x_n + \lim \inf y_n$ does not hold in general. Hint: There are several ways in which you can approach (a), you may use any of the following, (but you're not likely to need them all.)
 - (i) $\limsup x_n$, $\limsup x_n$, $\limsup x_n$ exist whenever $\{x_n\}$ is a bounded sequence.
 - (ii) $\sup(A+B) = \sup A + \sup B$, and $\sup(-A) = -\inf(A)$.
 - (iii) For any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $x \leq \limsup x_n + \varepsilon$ whenever k > N, and $\liminf x_n - \varepsilon < x_k$ for some k > N,

In the following, please show your work. Answers without explanation will receive no credit. Each quiz is worth 8 points in total.

- 1.1 (4 points) Consider the following sentence: "Every natural is divisible by some other natural number."
 - (a) Rewrite the above statement using the symbols \forall , \exists , \Rightarrow where appropriate.
 - (b) Negate your statement from part (a).

 $^{5}104$ f.tex

- 1.2 (4 points) Prove that $(2n+1) + (2n+3) + (2n+5) + \dots + (4n-1) = 3n^2$ for all positive integers *n*.
- 3.1 (5 points)
 - (a) Show that $\sqrt[3]{5}$ is not rational.
 - (b) Show that $2 + \sqrt[3]{5}$ is not rational.
- 3.2 (3 points) Suppose that $r \in \mathbb{Q}$ and $x \notin \mathbb{Q}$. Show that $rx \notin \mathbb{Q}$.
- 4.1 (4.5 points) Let S and T be tow non-empty subsets of \mathbb{R} such that for all $s \in S$ and $t \in T$, $s \leq t$.
 - (a) Prove that $\sup S$ and $\inf T$ exist.
 - (b) Prove that $\sup S \leq \inf T$.
- 4.2 (3.5 points) Prove (using the εN definition of limit) that $\lim_{n \to \infty} \frac{2n^2 + 3}{n^2 7} = 2$.
- 5.1 (a) (2 points) Suppose s_n is a sequence of nonnegative real numbers that converges to zero. Prove that the sequence $\sqrt{s_n}$ also converges to zero.
 - (b) (2 points) Suppose s_n is a sequence of nonnegative real numbers that converges to $s \neq 0$. Prove that the sequence $\sqrt{s_n}$ converges to \sqrt{s} . Hint: Use the fact that $\sqrt{x} - \sqrt{y} = \frac{x - y}{\sqrt{x} + \sqrt{y}}$.
- 5.2 (a) (2 points) State the precise definition of $\lim_{n \to \infty} t_n = +\infty$.
 - (b) (2 points) Use the precise definition of $\lim_{n \to \infty} t_n = +\infty$ to prove that $\lim_{n \to \infty} \frac{3n^2 + 2n}{n+4} = +\infty.$
- $6.1\,$ Determine whether the following limits exist and prove your assertions.

(a) (2.5 points)
$$\lim_{x \to 2} \frac{|x-2|}{x-2}$$
.

(b) (2.5 points)
$$\lim_{x \to 0} f(x)$$
, where $f(x) = \begin{cases} x^3 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}, \\ 0 & \text{if } x \in \mathbb{Q}. \end{cases}$
(c) (3 points) $\lim_{x \to -3^-} \frac{1}{(x+3)^5}$.

7.1 (3 points) For the following function, find the set of points of continuity and the set of points of discontinuity of function. Justify your answers in

both cases.
$$f(x) = \begin{cases} \frac{1}{x} \cos \frac{1}{x} & \text{if } x \neq 0; \\ 0 & \text{if } x = 0. \end{cases}$$

8.1 Determine whether the following continuous functions are uniformly continuous on the specified interval. You must justify your answers; you can use any theorems about uniform continuity presented in class.

a) (2 points)
$$f(x) = \frac{1}{x-4}$$
 on the interval (4,6].

(b) (2 points)
$$g(x) = \frac{1}{x-4}$$
 on the interval $[6, +\infty)$

c) (2 points)
$$h(x) = \cos \frac{1}{x}$$
 on the interval $(0, \frac{1}{\pi})$

- 8.2 (2 points) Show that the function $f(x) = \begin{cases} x \cos \frac{1}{x} & \text{if } x \neq 0; \\ 0 & \text{if } x = 0 \end{cases}$ is not differentiable at x = 0. (You may use any results here that we've previously shown...)
- 9.1 Determine whether the following functions are integrable on the specified interval [a, b]. If the function is integrable, determine $\int_{a}^{b} f(x)dx$. You may use any relevant results that we have encountered.

(a) (3 points)
$$f(x)$$
 on $[1,3]$, where $f(x) = \begin{cases} 2 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}; \\ 0 & \text{if } x \in \mathbb{Q}. \end{cases}$
(b) (2.5 points) $g(x)$ on $[0,1]$, where $g(x) = \begin{cases} 1 & \text{if } x = \frac{1}{3} \text{ or } \frac{2}{3}; \\ 0 & \text{otherwise.} \end{cases}$

9.2 (2.5 points) Compute the following limit, if it exists: $\lim_{x \to \pi} \frac{\int_{\pi^2}^{x^2} e^t \sin \sqrt{t} \, dt}{x - \pi}.$

10.1 For each $n \in \mathbb{N}$, let $f_n(x) = \frac{\sin(n^2 x)}{n^2}$.

- (a) (1.5 points) For each $x \in \mathbb{R}$, determine $\lim_{n \to \infty} f_n(x)$.
- (b) (3 points) Does the sequence (f_n) converge uniformly on \mathbb{R} ? Justify your answer.
- (c) (2 points) Does the series $\sum_{n=1}^{\infty} f_n(x)$ converge uniformly on \mathbb{R} ? Justify your answer.
- (d) (1.5 points) Does the series $\sum_{n=1}^{\infty} f_n(x)$ represent a continuous function on \mathbb{R} ? Justify your answer.

5.3 Sample Final Examinations

- 1. Let $f: A \to B$ be a function, show that f is injective (one-to-one) if and only if $f^{-1}[f[C]] = C$ for all $C \subset A$.
- 2. Let x_n be a sequence in a complete metric space (M, d) so that $d(x_n, x_{n+1}) \leq 1/n^2$. Does this imply that the sequence (x_n) converges?
- 3. Show that in a metric space any open set is a countable union of closed sets.
- 4. Let $\sum_{n} f_{n}$ be a series of functions which is uniformly convergent on [a, b]. Show that the series $\sum \frac{f_{n}}{n}$ also converges uniformly on [a, b].
- 5. Let $f : [0,1] \to \mathbb{R}$ be a continuously differentiable function in [0,1] with f(0) = 0 and f(1) = 1. Prove that $\in_0^1 |f'(x)|^2 dx \ge 1$.
- 6. (a) State the definition of the limit of a function at a point. (b) Decide whether $\lim_{x\to 0} x \sin \frac{1}{x}$ exists. Prove your assertion.
- 7. Find the Taylor series at 0 for the function $f(x) = \frac{3}{(1-x)(1+2x)}$. Decide whether and where the series converges to the function f.

5.4 Problems

- 1. (a) Determine whether each of the following series converges. In each case, carefully justify your answer, stating any results you use: (i) $\sum \frac{n}{2^n}$, (ii) $\sum \frac{n^2 + (-1)^n n}{n^4 + n^3 + \sqrt{n}}$.
 - (b) Show that if p, q > 0 then the series $\sum (-1)^n \frac{(\log(n+1))^p}{(n+1)^q}$ converges.
 - (c) Prove that $uv \leq (u^2 + v^2)/2$ for any real numbers u and v. Suppose that the series $\sum_n a_n$ is convergent, and that $a_n \geq 0$ for all $n \in \mathbb{N}$. Prove that the series $\sum \sqrt{a_n a_{n+1}}$ is also convergent.
- 2. (a) Determine the set of all $x \in \mathbb{R}$ for which the series $\sum_{n} \frac{x^{3n}}{2^n \sqrt{n}}$ converges. For which x is it absolutely convergent? For which is it conditionally convergent?
 - (b) Determine whether the series $\sum a_n$ converges, where $a_n = \frac{n!}{3\cdot 5\cdot 7\cdots (2n+1)}$.
 - (c) Suppose that $\sum a_n$ is a series of strictly positive terms and define b_n by $b_n = \frac{s_n}{n}$, where s_n is the *n*th partial sum of $\sum a_n$. Prove that if t_n is the *n*th partial sum of $\sum b_n$ then $t_n \ge a_1 r_n$ where r_n is the *n*th partial sum of the harmonic series $\sum 1/n$. Hence prove that $\sum b_n$ always diverges.
- 3. (a) State the Mean Value Theorem.

Suppose that the function $f : \mathbb{R} \to \mathbb{R}$ is differentiable. Suppose also that f(a) < 0 < f(b) for some real numbers a < b, and htat $0 < m \le f'(x) \le M$ for all $x \in \mathbb{R}$. Given $x_{\in}(a, b)$, define the sequence (x_n) by $x_{n+1} = x_n - \frac{f(x_n)}{M}$, why is there is a unique solution $c \in (a, b)$ of the equation f(x) = 0? Prove that $|x_{n+1}-c| \le \frac{|f(x_1)|}{m} \left(1 - \frac{m}{M}\right)^n$, and deduce that $x_n \to c$ as $n \to \infty$. You may find it useful to note that

$$x_{n+1} = x_n - \frac{f(x_n)}{M} = x_n - \frac{f(x_n) - f(c)}{M}.$$

(b) Suppose that for a constant α , the function $f : \mathbb{R}^2 \to \mathbb{R}$ is defined by $g(x, y) = \begin{cases} \frac{x^{\alpha}}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0); \\ 0 & \text{if } (x, y) = (0, 0). \end{cases}$

For which values of α is the function continuous at (x, y) = (0, 0)? Justify your answer.

- 4. (a) State the Bolzano-Weierstrass Theorem for sequence of real numbers. Suppose I is the interval [a, b] with b > a. and that $f : I \to \mathbb{R}$ is continuous with the property that for each $x \in I$, there is $y \in I$ such that $|f(y)| \le |f(x)|/2$. Prove that there exists $c \in I$ such that f(c) = 0, stating clearly any results you use.
 - (b) What does it mean to say that a function $g : \mathbb{R}^2 \to \mathbb{R}$ is differentiable at $a \in \mathbb{R}^2$?

What is meant by the *directional derivative* of $g : \mathbb{R}^2 \to \mathbb{R}$ at $a \in \mathbb{R}^2$? Suppose that $g : \mathbb{R}^2 \to \mathbb{R}$ is defined by

 $g(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2} & \text{if } (x,y) \neq (0,0); \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$ Prove that g has directional

derivative at (x, y) = (0, 0) in all directions, and determine these. Prove, however that g is not differentiable at (0, 0).

- (a) What is meant by an open subset of R^m? What is meant by a closed subset of R^m? Prove that if U is an open subset of R^m then its complement R^m \ U is a closed set.
 - (b) What does it mean to say that a subset C of \mathbb{R}^m is connected? Prove that if C is a connected subset of \mathbb{R}^m and $f : \mathbb{R}^m \to \mathbb{R}^n$ is continuous, then $f[C] = \{ f(x) \mid x \in C \}$ is a connected subset of \mathbb{R}^n .
 - (c) What is meant by a compact subset of \mathbb{R}^m ?

Suppose that for each natural number n, C_n is a non-empty compact subset of \mathbb{R}^m and that $C_1 \supseteq C_2 \supseteq C_3 \supseteq \cdots$ i.e. $C_{k+1} \supseteq C_k$ for each k. Prove that $\bigcap_{n=1}^{\infty} C_n \neq \emptyset$. Hint: consider any sequence (x_n) in which $x_n \in C_n$.

- 6. (a) Define what it means to say that (A, d) is a metric space. What is meant by an *open subset* of (A, d)? Suppose (A, d) is a metric space. Define $d_2 : A \times A \to \mathbb{R}$ by $d_2(x, y) = \frac{d(x, y)}{1 + d(x, y)}$. Verify that d_2 is a metric on A.
 - (b) Suppose that (A₁, d₁), (A₂, d₂) are metric spaces and that f is a function mapping from A₁ to A₂. What does it mean to say that f is (d₁, d₂)-continuous?
 Suppose that (A, d) is a metric space. Let Ø ≠ B ⊂ A and, for

 $x \in A$, let $d(x, B) = \inf\{ d(x, b) \mid b \in B \}$. Prove that for all $x, y \in A$, $|d(x, B) - d(y, B)| \le d(x, y)$. De duce that for any $\varepsilon > 0$, the set $\{ x \in A \mid 0 < d(x, B) < \varepsilon \}$ is open, stating clearly any result you use.

5.5 Final Examination I

- 1.1 Define the Cantor K to be the set of real numbers of the form $\sum_{n=1}^{\infty} \frac{a_n}{3^n}$, where each $a_n \in \{0, 2\}$. Is K countable or uncountable? Prove your answer.⁶
- 1.2 Prove directly from the definition that if the sequence (x_n) of real numbers converges, then $\lim_{n\to\infty} x_n^2 = \left(\lim_{n\to\infty} x_n\right)^2$. Show that (x_n^2) may be convergent even if (x_n) is not.
- 1.3 Prove from the definition that the intersection of finitely many open sets is open. Show that the intersection of infinitely many open sets may not

 $^{^{6}}math 360 exam 1 sol.pdf$

be open.

1.4 If
$$x_n = \cos\left(\frac{(3n^3 + n + 2)\pi}{6}\right)$$
, determine $\limsup_{n \to \infty} x_n$. Prove your answer is correct.

- 1.5 (a) Prove directly from the definition that the set $S = \{ (x, y) \in \mathbb{R}^2 \mid y > 0 \}$ is open.
 - (b) Prove that the definition that S is not closed.
- 1.6 Prove that the sequence (x_n) , defined inductively by $x_1 = 1$, $x_{n+1} = \sqrt{2 + x_n}$, is convergent. What is its limit?

5.6 Final Examination II

- 2.1 (a) If A is connected, prove that the closure cl(A) is connected.⁷
 - (b) Show that if A is path-connected, cl(A) may not be path-connected.
- 2.2 (a) Using sequences, prove that if f is continuous, then f[K] is compact whenever K is compact, and $f^{-1}[C]$ is closed whenever C is closed.
 - (b) Show that the inverse image of a compact set may not be compact, and that the image of a closed set may not be closed.
- 2.3 Define the distance between two sets A and B in \mathbb{R}^2 to be $D(A, B) = \inf\{ \|x y\| \mid x \in A, y \in B \}$. Suppose that A and B are disjoint. Show that
 - (a) If A and B are compact, then D(A, B) > 0.
 - (b) If A and B are just closed, then D(A, B) may be equal to zero. What happens if A is compact and B is closed? Justify your answer.

- 2.4 (a) Let f be a bounded function on [a, b]. Prove that if there is a sequence \mathcal{P} of partitions of [a, b] such that $I = {}_{n \to \infty} U(f, \mathcal{P}_n) = {}_{n \to \infty} L(f, \mathcal{P}_n),$ then f is integrable and $\int_a^b f(x) dx = I.$ (b) Suppose that
 - (b) Suppose that

$$f(x) = \begin{cases} 0 & \text{if } -1 \le x < 0; \\ 1 & \text{if } 0 \le x \le 1. \end{cases}$$

Use the result above to prove directly that f is integrable and to compute $\int_{-1}^{1} f(x) dx$.

2.5 Show that if f'' exists and is continuous on $[0, \infty)$ then $f(x) = f(0) + f'(0)x + \int_0^x (x-t)f''(t)dt$, for all $x \ge 0$.

6 Review Exercises

6.1 Interval

- 1. If I = [a, b] and J = [c, d] are closed intervals in \mathbb{R} . Show that $I \subset J$ if and only if $c \leq a$ and $b \leq d$. What happens if I and J are open intervals?
- 2. If $S \subset \mathbb{R}$ is non-empty, show that S is bounded if and only if there is some closed interval I such that $S \subset I$.
- 3. Let S be a non-empty bounded subset of \mathbb{R} , show that

(a) $S \subset [\inf S, \sup S].$

- (b) If J is a closed interval such that $S \subset J$, then $[\inf S, \sup S] \subset J$.
- 4. Let $I_n = [a_n, b_n]$ $(n \ge 1)$ be a collection of closed intervals, prove that $I_1 \supset I_2 \supset \cdots$ (i.e. they are nested intervals) if and only if $a_1 \le a_2 \le \cdots$ and $b_1 \ge b_2 \ge \cdots$.

5. Let
$$I_n = (0, 1/n)$$
 for $n = 1, 2, \cdots$. Prove that $\bigcap_{n=1}^{\infty} I_n = \emptyset$.

 $^{^7}$ math360exam2sol.pdf

- 6. Prove that every point of closed interval [0, 1] is a cluster point of open interval (0, 1).
- 7. Show that a finite subset in \mathbb{R} has no cluster points.
- 8. If x > 0 and $0 < \varepsilon < x$, show that there are at most finitely many positive integers n such that $1/n \in (x \varepsilon, x + \varepsilon)$.
- 9. Prove that every point of I = [0, 1] is a cluster point of $I \cap \mathbb{Q}$ and $I \setminus \mathbb{Q}$ respectively.
- 10. Suppose that a_k $(k = 1, 2, \dots, n)$ and b_k $(k = 1, 2, \dots, m)$ all belong to $\{0, 1, \dots, 8, 9\}$ and that $\frac{a_1}{10^1} + \frac{a_2}{10^2} + \dots + \frac{a_n}{10^n} = \frac{b_1}{10^1} + \frac{b_2}{10^2} + \dots + \frac{b_m}{10^m} \neq 0$. Show that (i) n = m and (ii) $a_k = b_k$ $(k = 1, 2, \dots, n)$.

6.2 Cauchy Criterion

- 1. Give an example of a bounded sequence that is not a Cauchy sequence.
- 2. Show directly that the following are Cauchy sequences: (a) $x_n = \frac{n+1}{n}$; (b) $y_n = 1 + \frac{1}{2!} + \dots + \frac{1}{n!}$.
- 3. Show directly that the following are not Cauchy sequences: (a) $x_n = (-1)^n$; (b) $y_n = n + \frac{(-1)^n}{n}$.
- 4. Show directly that if (x_n) and (y_n) are Cauchy sequences, then the sequence $(x_n + y_n)$ and $(x_n \cdot y_n)$ are Cauchy.
- 5. Let (x_n) be a Cauchy sequence such that x_n is an integer for all $n \in \mathbb{N}$. Show that (x_n) is ultimately constant.
- 6. Show directly that a bounded monotone increasing sequence is a Cauchy sequence.
- 7. If $x_1 < x_2$ are arbitrary real numbers and $x_n = \frac{1}{2}(x_{n-1} + x_{n-2})$ for all n > 2, show that (x_n) is convergent. What is its limit?

- 8. If $x_1 > 0$ and $x_{n+1} = \frac{1}{2+x_n}$ for all n > 1, show that (x_n) is contractive sequence. Find the limit.
- 9. The polynomial equation $x^3 5x + 1 = 0$ has a root r with 0 < r < 1. Use an appropriate contractive sequence to calculate r with 10^{-4} .

6.3 Limits of Functions

- 1. Determine a condition on the range of |x-1| that will assure that
 - (a) |x² 1| < 1/2;
 (b) |x² 1| < 1/10³;
 (c) |x² 1| < 1/n, for a given natural number n ∈ N;
 (d) |x³ 1| < 1/n, for a given natural number n ∈ N;
- 2. Let c be a limit point of $A \subset \mathbb{R}$ and let $f : A \to \mathbb{R}$. Prove that $\lim_{x \to c} f(x) = L$ if and only if $| \underset{x \to c}{|} f(x) - L | = 0$.
- 3. Let $f : \mathbb{R} \to \mathbb{R}$ and let $c \in \mathbb{R}$. Show that $\lim_{x \to c} f(x) = L$ if and only if $\lim_{x \to 0} f(x+c) = L$.
- 4. Let $f : \mathbb{R} \to \mathbb{R}$, $I \subset \mathbb{R}$ be an open interval and $c \in I$. If $f_1 = f|_I$ be the restriction of f onto I. Show that (i) f_1 has a limit at c if and only if f has a limit at c, and (ii) their limits are the same.
- 5. Let $f : \mathbb{R} \to \mathbb{R}$, $J \subset \mathbb{R}$ be a closed interval, and $c \in J$. If $f_2 = f|_J$, show that if f has a limit at c, then f_2 has a limit at c. Show that the converse does not hold.
- 6. Let I = (0, a) be an open interval with a > 0, and $g(x) = x^2$ for all $x \in I$. (i) For any $x, c \in I$, show that $|g(x) - c2| \le 2a|x - c|$.
 - (ii) Use the inequality above to prove that $_{x\to c}f(x) = c^2$, for any $c \in I$.

- 7. Let $I \subset \mathbb{R}$ be an interval, $f : I \to \mathbb{R}$ be a function and $c \in I$. Suppose that there exists numbers K and L such that $|f(x) L| \leq K|x c|$ for all $x \in I$. Show that $\lim_{x \to c} f(x) = L$.
- 8. Show that $\lim_{x \to c} x^3 = c^3$.
- 9. Show that $\lim_{x\to c} \sqrt{x} = \sqrt{c}$ for any c > 0.
- 10. Use both $\varepsilon \delta$ and the sequential formulations of the notion of a limit to establish the following:

(a)
$$\lim_{x \to 2} \frac{1}{1-x} = -1$$
 for $x > 1$.
(b) $\lim_{x \to 1} \frac{x}{1+x} = \frac{1}{2}$ for $x > 0$.
(c) $\lim_{x \to 0} \frac{x^2}{|x|} = 0$ for $x \neq 0$.
(d) $\lim_{x \to 1} \frac{x^2 - x + 1}{x+1} = \frac{1}{2}$ for $x > 0$.

11. Show that the following limits do not exist in \mathbb{R} :

(a)
$$\lim_{x \to 0} \frac{1}{x^2}$$
 for $x > 0$.
(b) $\lim_{x \to 0} \frac{1}{\sqrt{x}}$ for $x > 0$.
(c) $\lim_{x \to 0} (x + \operatorname{sgn}(x))$.
(d) $\lim_{x \to 0} \sin \frac{1}{x^2}$ for $x \neq 0$.

- 12. Suppose that the function $f : \mathbb{R} \to \mathbb{R}$ has limit L at 0, and let a > 0. If $g : \mathbb{R} \to \mathbb{R}$ is defined by g(x) = f(ax) for all $x \in \mathbb{R}$, show that $\lim_{x \to 0} g(x) = L$.
- 13. Let c be a limit point of A ($\subset \mathbb{R}$), and let $f : A \to \mathbb{R}$ be such that $\lim_{x \to c} f(x)^2 = L$. Show that if L = 0, then $\lim_{x \to 0} f(x) = 0$. Show by example that if $L \neq 0$, then f may not have a limit at c.

6.4 Limits

1. Determine the following limits:

(a)
$$\lim_{x \to 1} (x+1)(2x+3)$$
.
(b) $\lim_{x \to 1} \frac{x^2+2}{x^2-1}$.
(c) $\lim_{x \to 2} \left(\frac{1}{x+1} - \frac{1}{2x}\right)$.
(d) $\lim_{x \to 0} \frac{|x+1|}{x^2+2}$.

2. Determine the following limits:

(a)
$$\lim_{x \to 2} \sqrt{\frac{2x+1}{x+3}}$$
.
(b) $\lim_{x \to 2} \frac{x^2 - 4}{x-2}$.
(c) $\lim_{x \to 2} \frac{(x+1)^2 - 1}{x}$.
(d) $\lim_{x \to 0} \frac{\sqrt{x-1}}{x-1}$.
3. Find $\lim_{x \to 0} \frac{\sqrt{1+2x} - \sqrt{1+3x}}{x+2x^2}$, where $x > 0$.
4. Prove that $\lim_{x \to 0} \cos(\frac{1}{x})$ does not exist but that $\lim_{x \to 0} x \cos(\frac{1}{x}) = 0$.

- 5. Let $f, g : A \to \mathbb{R}$ be two functions, and c is a limit point of A. Suppose that f is bounded on a neighborhood of c and that $\lim_{x\to c} g(x) = 0$. Prove that $\lim_{x\to c} (f(x) \cdot g(x)) = 0$.
- 6. Let $n \ge 3$ be a natural number. Show that $-x^2 \le x^n \le x^2$ for all -1 < x < 1. Then use the fact that $\lim_{x \to 0} x^2 = 0$ to show that $\lim_{x \to 0} x^n = 0$.
- 7. Let $f, g: A \to \mathbb{R}$ and c is a limit point of A.
 - (a) Show that if both $\lim_{x \to c} f(x)$ and $\lim_{x \to c} (f(x) + g(x))$ exist, then $\lim_{x \to c} g(x)$ exists.

- (b) If both $\lim_{x\to c} f(x)$ and $\lim_{x\to c} (f(x) \cdot g(x))$ exist, does it follow that $\lim_{x\to c} g(x)$ exists?
- 8. Give examples of functions f and g defined on the same domain such that f and g do not have limits at a point c, but such that both $f \cdot g$ and f + g have limits at c.
- 9. Determine whether the following limits exist in \mathbb{R} :

(a)
$$\lim_{x \to 0} \sin(\frac{1}{x^2}) \text{ for } x \neq 0.$$

(b)
$$\lim_{x \to 0} x \sin(\frac{1}{\sqrt{x^2}}) \text{ for } x \neq 0.$$

(c)
$$\lim_{x \to 0} \operatorname{sgn}(\sin(1/x)).$$

(d)
$$\lim_{x \to 0} \sqrt{x} \sin \frac{1}{x^2} \text{ for } x \neq 0.$$

- 10. Give examples of functions f and g such that f and g do not have limits at a point c, but such that both f + g and $f \cdot g$ have limits at c.
- 11. Determine whether the following limits exist in \mathbb{R} :

(a)
$$\lim_{x \to 0} \sin(\frac{1}{x^2}).$$

(b)
$$\lim_{x \to 0} x \sin(\frac{1}{x^2}).$$

(c)
$$\lim_{x \to 0} \operatorname{sgn}(\sin(\frac{1}{x})).$$

(d)
$$\lim_{x \to 0} \sqrt{x} \sin(\frac{1}{x^2}).$$

12. Let $f : \mathbb{R} \to \mathbb{R}$ be such that f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. Assume that $\lim_{x \to 0} f(x) = L$. Prove that L = 0, and then prove that f has a limit at every point $c \in \mathbb{R}$.

Hint: First note that f(2x) = f(x) + f(x) = 2f(x) for all $x \in \mathbb{R}$. Also note that f(x) = f(x-c) + f(c). for $x, c \in \mathbb{R}$.

6.5 True and False

Here are some common attempts to define the notion of a convergent sequence. Study them and see why they are incorrect. In order to reinforce your understanding, create a sequence in each case illustrating what is wrong with the definition. (I provided one such example in the first case.)

- 1. A set A is countable if and only if it is finite.
- 2. A set A is countable if and only if there exist a surjection from A onto \mathbb{N} .
- 3. $A \times B = \{ a \cdot b \mid a \in A \text{ and } b \in B \}.$
- 4. $f: X \to \mathbb{R}$ is uniformly continuous if and only if f is continuous.
- 5. A sequence converges to x if there exists an N such that for all n > Nand all $\varepsilon > 0$, $|s_n - x| < \varepsilon$.

This definition is too strong, since with this definition the sequence $\{ 1/n \mid n \ge 1 \}$ does not converge to zero. There does not exist any N which works for all $\varepsilon > 0$. Indeed, given any N > 0, we can choose $\varepsilon = \frac{1}{N+2}$, and then $|s_{n+1} - 0| = \frac{1}{n+1} > \varepsilon$.

- 6. A sequence (x_n) converges to x if for all $\varepsilon > 0$ there exists an n > N such that $|s_n x| < \varepsilon$.
- 7. A sequence converges to x if there exists an n_0 such that for all $n > n_0$, there exists an $\varepsilon > 0$ such that $|s_n - x| < \varepsilon$.
- 8. A sequence converges to x if there exists an N and an ε such that for all n > N, $|s_n x| < \varepsilon$.
- 9. A sequence converges to x if $|s_n x| < \varepsilon$ for all n, where $\varepsilon > 0$.

6.6 Important points for review

1. Prove that the series $\sum \frac{1}{n}$ diverges.

- 2. Prove that the series $\sum \frac{1}{n^{\alpha}}$ converges if $\alpha > 1$.
- 3. Properties of the set $\mathbb N$ of natural numbers.
 - (a) smallest inductive set.
 - (b) principle mathematical induction.
 - (c) well-ordering principle, existence of minimal element for any non-empty subset of \mathbb{N} .
- 4. In order to prove that a subset S of \mathbb{R} has a finite supremum, one needs to establish the following:
 - (a) S is non-empty
 - (b) S has an upper bound, or S is bounded above.
 - (c) Apply the Supremum principle to claim the existence. Usually, it is very difficult to find out the supremum.