```
frmMain - 2
        End If
    End If
    inputArray(2, inputTerm) = txtPeriod. Text
    'point to next storage variable
   inputTerm = inputTerm + 1
    Call PrintEquation(inputArray, inputTerm)
                                                   'print out input signal
End Sub
'Form Loading
Private Sub Form Load()
    LineXAxis. X1 = 0
    LineXAxis. X2 = picResponse. Width
    LineXAxis. Y1 = picResponse. Height / 2
    LineXAxis. Y2 = picResponse. Height / 2
    inputTerm = 0
End Sub
                   ___ D F T C A L C U L A T I O N __
'/*
' Process the data, perform sampling and DTF. TextBox txtNoofSample and txtSamplingFrequency
 are the input parmeter for sampling, variable inputArray is the oringinal harmonic signal
 for sampling. After implementing the DFT transformation, print the output and input data
' in files txtDFT. txt. Notice that this function will call program DFTMath.
Private Sub Calculate()
    Dim n As Integer
    Dim k As Integer
   Dim v As Variant
    'input parameter
    NoOfSample = txtNoOfSample. Text
    samplingFrequency = txtSamplingFrequency. Text
    'perform sampling of analogy signal
    v = Sampling(inputArray, inputTerm, NoOfSample, samplingFrequency)
    For n = 0 To 1000
        x(n) = v(n)
    Next n
    'perform DFT of x[n]
    v = DFT(x, NoOfSample)
    For k = 0 To 1000
        F(k) = v(k)
    Next k
   'store the data in file "txtDFT.txt"
   Open App. Path & "\ txtDFT. txt" For Output As #1
        Print #1, "Equation: " & txtEquation. Text
        Print #1, "sampling Frequency: " & txtSamplingFrequency. Text
        Print #1, "No of sample: " & txtNoOfSample. Text
        Print #1, ""
        Print #1, ""
        'print input data out, time x[n]
        For n = 0 To NoOfSample - 1
        Print #1, "x[" & n & "]" & " = " & FormatNumber(x(n), 2)
        Next n
        Print #1, ""
        Print #1, ""
```

```
frmMain - 3
        For n = 0 To NoOfSample - 1
        Print #1, "F[" & n & "]" & " = " & FormatNumber(F(n), 2)
        Next n
   Close 1
End Sub
                PLOT GRAPH
  Draw signal in Time/Frequency Domain. Before plot the spectrum it will clear
  the picture box first, then process the data once again to ensure any new data
  input are inclued.
Pri vate Sub cmdTi meDomai n_Cl i ck()
    CallmnuClearResponse Click
    Call Calculate
    Call printDataOut(x, F, NoOfSample, True)
    Call plot(x, NoOfSample, samplingFrequency)
End Sub
Pri vate Sub cmdFrequencyDomain_Click()
    CallmuClearResponse_Click
   Call Calculate
   Call printDataOut(x, F, NoOfSample, False)
                                                ' 1000 as DTF is repetative
    Call plot(F, 1000, samplingFrequency)
End Sub
                    _ A B O U T
'// Description of the Program DFT VO. 1
Pri vate Sub mnuAbout_Click()
    MsgBox ("The program demonstrate the digial superposition of several harmonic signal." _
         & "And plot the corresponding Fourier transform spectrums."
         & "Users can add the harmonic function to the input stream. When program start," \_
         & "it will perform sampling of the analogy input signal according the sampling" _
         & "frequency and the number of sample of the input. After x[n] is obtained, the"
         & "further process is calculate the DFT X[k] of the input x[n]. Graphic in time" _
         & "domain and frequnecy domain spectrums will also be ploted. ")
End Sub
                ____ MENU FUNCTION __
'// Clear the x[n]
Pri vate Sub mnuCl earResponse_Click()
    Dim i As Integer
   txtResponse. Text = ""
    pi cResponse. Cls
    For i = 0 To 1000
         x(i) = 0
         Fr(i) = 0
         Fi(i) = 0
         F(i) = 0
         \Phi(i) = 0
    Next i
End Sub
'//Clear the equation x(t)
Pri vate Sub mnuClearEquation_Click()
    Dimi, j, n As Integer
    For i = 0 To 1000
        x(i) = 0
```

```
frmMain - 4
         Fr(i) = 0
         Fi(i) = 0
         F(i) = 0
         \Phi(i) = 0
   Next i
    For j = 0 To 2
        For i = 0 To 1000
           inputArray(j, i) = 0
        Next i
    Next j
    inputTerm = 0
    txtEquation. Text = ""
End Sub
'//Some sample for DTF demonstation
Pri vate Sub mnuSample_Click(Index As Integer)
    Call mnuClearEquation_Click
    CallmuClearResponse_Click
   Select Case Index
        Case 1: Call sample1
        Case 2: Call sample2
        Case 3: Call sample3
        Case 4: Call sample4
    End Select
    Call PrintEquation(inputArray, inputTerm)
    Call Calculate
End Sub
```

```
'*****Fill the repetitive samples in Frequency Domain*****

'fill N samples signal in the time domain and form a peridic signal i=0
For k=No0fSample To 1000
F(k)=F(i)
```

```
Draw - 1
  File: Draw. bas
  Purpose:
         This function will plot the spectrum in time domain or in frequency domain. Pass
         the data x[n] or F[n], Number of samples and sampling Frequency to function, will
         plot the data in the picture box. the magnitude will fix the scalar of the picture
         box, and the step in x-axis will rearragned according the sampling frequency. All
         in all, magnutide and the step in x-asix is necessary to fix the picture box.
                  ___ MATH CALCULATION _
Public Sub plot(x() As Double, NoOfSample As Integer, samplingFrequency As Double)
    Dim n As Integer
    Dim magnitude As Integer
    Dim xAxis As Long
    Dim xstep As Integer
    Dim max As Integer
    frmMain. picResponse. Cls
    frmMain. picResponse. DrawWidth = 3
    'step of x-axis
   xstep = FormatNumber(1 / samplingFrequency * 500, 6)
    xAxis = 720
    'weight of manitude, determine the max-x[n] so that to match the height of picResponse
    max = 0
    For n = 0 To NoOfSample - 1
        If Abs(x(n)) > max Then
            max = Abs(x(n))
        End If
    Next n
    'draw line
    For n = 0 To NoOfSample - 1
       xAxis = xAxis + xstep
        If xAxis < frmMain. picResponse. ScaleWidth Then
            'max magnitude only consume 80% of the max height of the picture box
            magni tude = x(n) * (frmWain. pi cResponse. Scal eHeight / 2) * 0.8 / max
            frmMain. picResponse. Line (xAxis, frmMain. picResponse. ScaleHeight / 2) - (xAxis, frmMain. picResponse. Scal
eHeight / 2 - magnitude)
        End If
    Next n
```

End Sub

```
printOut - 1
print the harmonic sampled signal x[n] and DTF transfromed F[k] in the text
Public Sub printDataOut(x() As Double, F() As Double, NoOfSample As Integer, isT As Boolean)
   Dim k As Integer
   Dim strxn As String
   frmMain. txtResponse. Text = ""
   If isT = True Then
       'print input data out, time x[n]
       strxn = "
       For n = 0 To NoOfSample - 1
           strxn = strxn \& FormatNumber(x(n), 2) \& ", "
           strxn = strxn & "..... + repeat term"
       frmMain.txtResponse.Text = frmMain.txtResponse.Text & "x[n] = { " & strxn & " } "
   End If
   If isT = False Then
       'print input data out, frequency F[k]
       strxn = ""
       For k = 0 To NoOfSample - 1
           strxn = strxn & FormatNumber(F(k), 2) & ", "
           strxn = strxn & "..... + repeat term"
       frmMain. txtResponse. Text = frmMain. txtResponse. Text & " F[k] = \{ " & strxn & " \} "
   End If
End Sub
    Print harmonic function input signals, in the label. So that user can know
    what is his/her input signals
'*/
Public Sub PrintEquation(inputArray() As Double, inputTerm As Integer)
   Dim n As Integer
   Dim s As String
    'write down the user input harmonic function
    frmMain.txtEquation.Text =
   For n = 0 To inputTerm - 1
       'determine whether it is COS or SIN function
       If inputArray(1, n) = 1 Then
           s = "COS(2 \pi n/"
       Else
           If inputArray(1, n) = 0 Then
              s = "SIN(2\pi n/"
           Else
               s = ""
           End If
       End If
       'print out
```

```
Sample - 1
  Following is the samples for the DFT analysis
  EXAMPLE 1:
  x(t) = 4
  DC with magnitude 4
Public Sub sample1()
    'inputArray(field1, field2)
    '[field1]
    'magnitude, function, period
    '--magni tude:
    '--function: 1 means cos, 0 means sin, -1 means DC
    \ensuremath{^{'}}\text{--period:} sec, for DC period is meaningless
    '[field2]
    'termindex
    Call frmMain.setInputArray(0, 0, 4)
    Call frmMain.setInputArray(1, 0, -1)
    Call frmMain.setInputArray(2, 0, 10)
    CallfrmMain.setInputTerm(1)
    'set text field display
    frmMain.txtNoOfSample.Text = 20
    frmMain. txtSamplingFrequency. Text = 5
End Sub
  EXAMPLE 2:
  x(t) = 1 + 2COS(2 \pi n/4) + 1SIN(2 \pi n/8)
  sampling frequency 5 and no of sample = 10
Public Sub sample2()
    Dim i As Integer
    i = 0
    Call frmMain.setInputArray(0, 0, 1)
    Call frmMain.setInputArray(1, 0, -1)
    Call frmMain.setInputArray(2, 0, 1)
    i = i + 1
    Call frmMain.setInputArray(0, 1, 2)
    Call frmMain.setInputArray(1, 1, 1)
    Call frmMain.setInputArray(2, 1, 4)
    i = i + 1
    Call frmMain.setInputArray(0, 2, 1)
    Call frmMain.setInputArray(1, 2, 0)
    Call frmMain.setInputArray(2, 2, 8)
    i = i + 1
    CallfrmMain.setInputTerm(i)
    frmMain.txtNoOfSample.Text = 10
    frmMain. txtSamplingFrequency. Text = 5
End Sub
```

```
Sample - 2
  EXAMPLE 3:
  x(t) = \cos(2\pi n/4)
  fs = 10, N=100
Public Sub sample3()
    Dim i As Integer
    i = 0
    Call frmMain.setInputArray(0, 0, 2)
    Call frmMain.setInputArray(1, 0, 1)
    Call frmMain.setInputArray(2, 0, 4)
    i = i + 1
    CallfrmMain.setInputTerm(i)
    frmMain.txtNoOfSample.Text = 100
    frmMain.txtSamplingFrequency.Text = 10
End Sub
  EXAMPLE 4:
 x(t) = cos(2 \pi n/4) + cos(2 \pi n/8) + cos(2 \pi n/12)
' fs = 25, N = 600
Public Sub sample4()
    Dim i As Integer
    i = 0
    Call frmMain.setInputArray(0, 0, 2)
    Call frmMain.setInputArray(1, 0, 1)
    Call frmMain.setInputArray(2, 0, 4)
    i = i + 1
    Call frmMain.setInputArray(0, 1, 2)
    Call frmMain.setInputArray(1, 1, 1)
    Call frmMain.setInputArray(2, 1, 8)
    i = i + 1
    Call frmMain.setInputArray(0, 2, 2)
    Call frmMain.setInputArray(1, 2, 1)
    Call frmMain.setInputArray(2, 2, 12)
    i = i + 1
    CallfrmMain.setInputTerm(i)
    frmMain.txtNoOfSample.Text = 600
    frmMain.txtSamplingFrequency.Text = 25
End Sub
```

```
SamplingMath - 1
    Perform sampling of the analogy harmonic signal. inputArray consist the harmonic function
    parameter, like the magnitude, sin/Cos/Dc and period. inputTerm indicate how many input
    term of harmonic function. Of course, No of sample and sampling frequecy are the parameter
    for sampling.
Public Function Sampling(inputArray() As Double, inputTerm As Integer, NoOfSample
                          As Integer, samplingFrequency As Double) As Variant
    Dim n As Integer
    Dim ans As Double
    Dim T As Double
    Dim pi As Double
    Dim i As Integer
    Dim k As Integer
    Dim x(1000) As Double
    pi = 4 * Atn(1)
    '*Process data in Time Domain
    For n = 0 To NoOfSample - 1
        For i = 0 To inputTerm - 1
            If inputArray(1, i) = 1 Then cos signal
                ans = inputArray(0, i) * Math. Cos(2 * pi * n / (inputArray(2, i) * samplingFrequency))
           Else
                If inputArray(1, i) = 0 Then
                                               ' sin signal
                    ans = inputArray(0, i) * Math. Sin(2 * pi * n / (inputArray(2, i) * samplingFrequency))
                                                ' DC signal
                Else
                    ans = inputArray(0, i)
                End If
            End If
            x(n) = x(n) + ans
        Next i
      'print out
      'frmMain.lstResponse.AddItem (" x[" & n & "] = " & FormatNumber(x(n), 6))
   Next n
  Sampling = x()
End Function
```