Virtual Memory

*All following strategies have the same goal; to keep many processes in memory simultaneously, to allow multi-programming.

*The system designer doesn’t intend to increase the physical memory

Assumption

1. Only part of a complete program are active

2. Only part of the data will be access

3. Program and data are each partitioned into distinct non-overlapping logical modules.

Pros:

1. Program can be larger than physical memory

2. Frees programmer from the concern of memory storage limitations

3. Allows process to easily share files and address space.

Pure demand

Initially, all the frames are free. When a user processes start execution, it will generate a sequence of page faults. At the beginning page fault can get a free frames. When the free frames list are exhausted. A page-replacement algorithm will be used to select a frame. When the process terminated, the process will free their frame to free-frame list.

Page-fault

While the process executes and access pages that are memory resident, execute process normally. If find the page table is non-resident, a page fault will occur. This is the result of the OS failure to bring the desired page into memory. When this happen, OS will interrupted and suspend the process, then OS will find a free frame, schedule a disk operation to read the desired page into the newly allocated frame, update the page table contents, and finally restart the process in exactly the same place and state (as interrupt routine will save the process’s state, register, condition code, instruction counter etc.)

If there is a free frame in the free-frame list, use it. If not, use a page-replacement algorithm (FIF0, LRU etc) to select a victim frame. Write the victim page to the disk; change the page and frame tables accordingly. Notice that, in the latter case, two page transfers (swap time) are required and it will double the page-fault services time.

Thrashing

A process is thrashing if it is spending more time paging than executing. Thrashing may occur if all the frames are in active used. If the process does not have enough frames, it will quickly page fault, and must replace a page that will be need again right away. Consequently, it quickly fault again, and again, and again. The process continues to fault, replacing pages for which it then faults and brings back in right away. This high paging activity is called thrashing.

To solve the thrashing

1. Decrease the degree of multi-programming, swap out a process freeing all its frames

2. Suspend/ terminate the user process, if thrashing occurs (Not a good choice, as user should not be aware that their processes are running on a page system, paging should be logically transparent to the users.)

3. Control the page-fault rate. Allocate more frames for high page-fault processes, and allocate fewer frames for low page-fault processes. (The better choice)

PAGE
2

