File: ErrorCodeDesign.doc

Declare all the possible codewords

Convert all the codewords in binary form and store it in arrays

Select 0 as the first reference codeword

Start compare all others codewords and reject the codewords that not fulfill the minimum hamming distance

After the first round rejection, select the second reference codeword then start compare and rejection again.

After several round rejections, no codewords can compare, all the reference codeword are the member codeword.

At that point we find the first code

Select 1 as the first reference codeword

Implement the above procedures again

Select 2,3,4……2^codewords as reference codeword

Calculate all the codes

Select the code that has maximum code size

RULE2

After the assistance program execute exhaustive search we find the code with maximum code size. A table will record the information that can be used to derive the optimum code.

Read the codeword size and minimum hamming distance

Get the optimum code

Content

1. Ofbjectives

2. Introduction

3. Program design

4. Flow chart

5. 6 bit codeword of an error correcting code with abiltiy to correct single bit error

6. 8 bit codeword of an error correcting code with abiltiy to correct 2 bit error

7. conclusion

8. Program code

9. Demonstration

Objective

· Design an error-detecting code based on the principle of minimum Hamming distance

· Develop a program to design the error-detecting code automatically

Introduction

A code is a set of codewords, each in size of n bits

Example: {0000,1111} is a code and the two codewords are 0000 and 1111. This code can carry the meanings of two things with a mapping. One mapping example is: Black ->0000; white ->1111.
Hamming Distance

The hamming distance of two codewords is the number of bits where they differ.

Example

The Hamming distance between 0000 and 1000 is 1.

The Hamming distance between 1011 and 1000 is 2.
Error-correcting ability

If the minimum Hamming distance between any two codewords in a code is 1, the code cannot detect or correct errors.

If the minimum Hamming distance between any two codewords in a code is 2, the code cannot detect one bit error.

If the minimum Hamming distance between any two codewords in a code is 3, the code cannot detect 2-bit error and correct 1-bit error.

If the minimum Hamming distance between any two codewords in a code is 5, the code cannot detect 4-bit error and correct 2-bit error.

If the minimum Hamming distance between any two codewords in a code is 2k+1, the code cannot detect 2k-bit error and correct k-bit error.
Design of error correcting code

If we can design a code such that the minimum Hamming distance between any two codewords is 3, then this code can correct one-bit error.

An example:

{000,111}, {001,110},{010,101},{011,100}

It can be seen that there can be 4 different codes with 3-bit codewords that can correct 1-bit error.

By programming, we can perform exhaustive search to find all the codewords that have minimum Hamming distance.

Program design

The development of the program can be derived into two parts; exhaustive search and table matching. At the beginning I use the exhaustive search technique to find the code with maximum code size. However, I find the execution time is very long when the codeword size is greater than 9 bits, for 12 bits it may take 6-8min. In order to enhance the speed of the program I had try many techniques and final I decide to use the table matching method. This is I build a program that find the code with maximum code size using exhaustive search, execute it and get, record all the code info result. Secondly, using the matching table, user program or final submit program will look for the table info and derive the answer very fast.

a. Exhaustive search

The following is the procedure for exhaustive search program:

1. Declare all the possible codewords

2. Convert all the codewords in binary form and store it in arrays

3. Select 0 as the first reference codeword

4. Start compare all others codewords and reject the codewords that not fulfill the minimum hamming distance

5. After the first round rejection, select the second reference codeword then start compare and rejection again.

6. After several round rejections, no codewords can compare, all the reference codeword are the member codeword.

7. At that point we find the first code

8. Select 1 as the first reference codeword

9. Implement the above procedures again

10. We have the second code

11. Select 2,3,4……2^codewords as reference codeword

12. Calculate all the codes

13. Select the code that has maximum code size
b. Table matching search

After the assistance program execute exhaustive search we find the code with maximum code size. A table will record the information that can be used to derive the optimum code. This program will execute very quick.

The following is the procedure for table matching search program

1. Read the codeword size and minimum hamming distance

2. Get the optimum code info from the matching table

3. Declare all the codewords

4. Convert the codewords in binary form and store it in the array

5. Use the optimum code info, determine the first reference codewords

6. Start rejection

7. Select second reference codewords

8. Implement second reject

9. Select 3,4,5,6,7… as reference codeword and implement rejection again and again

10. Output the optimum code

Flow chart

Start

Find the info from matching table that can derive the optimum code very quick

Input?

true

false

Keep the codeword

Reject the codeword

Codeword fullfills the minimum hamming distance?

Start rejection

Select a reference codeword

Next codeword

true

false

The last codeword?

false

Select the next reference codeword

The last reference codeword?

false

true

Extract all the reference codewords

Count the code size

Print Out the optimum code

END

true

 6/6

