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Abstract—A survey paper by Abraham and Fuchs published in 

1986 provided a reference for fault models. Fault modeling is still 
an active area of research, but to our best knowledge, there is no 
paper that surveys research and trends in this field. This paper 
describes models for these contemporary faults: stuck-open and 
stuck-on CMOS faults, delay faults, bridging faults, and crosstalk 
faults. Apart from surveying fault models, we present simulation 
results of models that were either developed by us or others, along 
with some recommendations. 
 

Index Terms—Fault models, contemporary faults, transistor 
faults, delay faults, bridging faults, crosstalk faults. 
 

I. INTRODUCTION 

he stuck-at fault model is perhaps the most widely used 
model for faults in digital circuits. Although many faults 

occur at the transistor-level, the stuck-at model is applied at 
the gate-level. In spite of this apparent mismatch, the stuck-at 
model has proven to be the de facto standard for fault 
modeling. As VLSI technology keeps deepening, the relevance 
of this model is brought into question every now and then. 
Along with that, new models and testing techniques were 
proposed to test faults that were previously ignored. This 
paper surveys important research in contemporary faults, with 
particular focus on modeling those faults. By using the term 
contemporary, we restrict our work to these specific faults: 
stuck-open and stuck-on transistor faults (hereafter referred to 
as general CMOS faults), bridging faults, and crosstalk faults. 
These faults are important in view of their relevance to today’s 
level of IC integration. We produced this paper keeping safety-
critical systems in mind; for in such systems, detailed fault 
modeling and simulation is necessary. 

It is interesting to recognize that present industry focus is 
still on testing faults using stuck-at models, so research that 
aims to develop gate-level abstractions of faults are important. 
Although the stuck-at model does not directly represent many 
physical failures in circuits, it has two strong arguments in its 
favor: (1) all test generation and fault simulation algorithms 
were originally developed for this fault, as it can be thought of 
as technology independent and well-suited for logic 
simulation, and (2) many faults can be deduced as stuck-at 
faults, by observing their behavior. The validity of the stuck-at 
model is brought into question time and again, and there are 
proponents who call for other testing methods, like circuit 
simulation [1], to test faults in CMOS circuits. However, 
circuit simulation is computationally expensive and time 
consuming, and further disadvantaged by the fact that the 
complexity of ICs keeps increasing. Stuck-at fault test 
generators are very mature, so, if faults can be reliably 

modeled to be processed by such test generators, which would 
save a lot of time and effort. Part of our work concentrates on 
such research. 

 

II. GENERAL CMOS FAULTS 
The stuck-at model can be reliably used in bipolar and 

nMOS circuits, since it represents a variety of physical 
failures. However, in CMOS circuits, the process irregularities 
that result in shorts and opens cannot be represented directly as 
stuck-at lines. These faults must certainly be tested for; 
otherwise unrealistic fault coverages would be obtained. In this 
section, stuck-open and stuck-on faults are described. Two 
other types of faults that occur at the transistor level, namely 
delay faults and bridging faults are dealt with in separate 
sections. The relevance of the stuck-at model to general 
CMOS faults was investigated in [2], so this paper will not 
address that question in detail. However, some papers that 
were published after [2] dealt with this, and we summarize 
those results in this section.  

2.1. Stuck-open faults  
 When a FET is locked in a non-conductive state 
independent of the control signal, a stuck-open fault results. 
Such cases include missing source and/or drain contacts, and 
broken connection lines. Gate-source shorts are also treated as 
stuck-opens. In the presence of this fault, a high impedance 
node may result, which retains its previous state. The detection 
requires at least two vectors, due to the sequential behavior. 
The first vector initializes the gate output to a logic value 
opposite to that driven by the network, and the second 
activates the fault by creating a conducting path between one 
of the power supplies and the output of the fault-free gate. This 
vector must also propagate the gate output to primary outputs.  

2.2. Stuck-on faults 
 When a FET is locked in a conductive state independent of 
the control signal, a stuck-on fault occurs. These represent 
physical failures such as drain-source shorts and errors in 
threshold voltage adjustment. In the presence of such a fault, a 
signal node can be connected to both power supply and 
ground, and it is driven to an intermediate voltage. It is 
worthwhile to note that a large percentage of these faults are 
undetectable. 

2.3. Early research 
The problem of applying stuck-at tests to detect stuck-open 

and stuck-on faults, was studied in the early 80s, and the 
recommendations of such research were summarized in [3].  In 
one case, it involves adding extra circuitry to each CMOS gate 
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to model the transistor faults as stuck-ats [4, 5]. This is clearly 
infeasible in large VLSI circuits. The other cases, which 
required transformations to derive gate-level equivalents of 
FCMOS gates [6, 7], had significant drawbacks. In a study 
carried out by [8], it was found that many defects in a typical 
circuit were undetectable by a logic-level test. 

2.4. A Fault Modeling Procedure 
 In [9], a fault modeling procedure was described to create a 
database with gate level faults. From the point of view of our 
survey, this method seems relevant and promising. New fault 
models were created to increase the accuracy of fault 
modeling. They are (1) Conditional faults: This is a fault that 
can be detected only if one of more conditions are satisfied, 
and (2) Function Conversion: This occurs when a Boolean 
function g is converted into a gate with the Boolean function f 
by a physical defect. 

2.4.1. General Method: Starting from a switch level 
description of a standard cell library, an appropriate fault 
model is chosen to model realistic faults. Then, for each cell in 
the library, the effect of each fault on that fault model is 
determined – this is done using analog simulations. The 
observed fault effects are characterized through gate-level 
faults. Based on this analysis, a database is created that can be 
used to generate a gate-level fault list for a given circuit. By 
this process, effective test patterns are generated based on low 
level fault model, and using gate-level tools. 

2.4.2. Simulation Results: To support the results made in 
[9], simulation was carried out for a FCMOS OR gate and a 
complex FCMOS gate implementing the function (D + A (B + 
C))’. A portion of the simulation results are shown below. For 
the OR gate, the same results were obtained as in [2]. In Figure 
2, it is seen that a short of A and line 1 can be modeled as 
function conversion of OR -> NOR, with input B stuck-at 0. 
Others, like B shorted with 1 and 2 shorted with ground 
manifest themselves as the primary output stuck-at 1. For the 
simulation of the circuit in Figure 3, similar results were 
observed. In this circuit, more cases were observed where the 
fault effect due to a short could not be observed as the 
manifestation of a stuck-at fault. This further proves the reason 
to use comprehensive fault models. 

2.4.3 Results for Static CMOS: In [9], the influences of all 
shorts and opens were determined for gates of the libraries. 
Table I summarizes the results for intra-gate shorts and opens 
in the static CMOS library. The table clearly shows the need to 
use non- classical fault models to reflect complex fault effects. 
For systems with safety critical applications, such 
comprehensive testing is necessary to assure quality of service. 

 
Fig.  1. CMOS OR gate. Lines 1 and 2 denote lines that were shorted in 
different combinations with the inputs. 
 

 
 
Fig.  2. Some simulation results of CMOS OR gate. The top two waveforms 
denote inputs A and B. The next waveform denotes the correct output. The 
next denotes the output when A is shorted with 1. The next two are the 
outputs (Z stuck-at 1) when 2 is shorted with the ground, and when B is 
shorted with 2.  
 

 
 
Fig.  3. Complex gate (D + A (B + C))’. Lines 1, 2, and 3 denote lines that 
were shorted in different combinations with the inputs. 

 
 
 
 
 

TABLE I 
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RESULTS FOR STATIC CMOS 
 

Fault  Coverage (%)  
Model Shorts Opens Total 

Stuck-at 78.3 - 46.2 
Transition - 66.7 26.5 
Conditional 
transition 

- 33.3 13.2 

Function 5.8 - 2.6 
Conditional 
function 

11.6 - 6.8 

Bridging 
“unknown” 

4.3 - 3.4 

 

2.5. Test Vector Generation 
 An interesting result was reported in [10]. This is presented 
in Figures 4 and 5. They found that for stuck-open faults, test 
sequences generated in pseudorandom fashion give a better 
indirect coverage than deterministic ones. This is because the 
former is longer, and hence has a greater probability of 
matching the condition required for stuck-open fault detection, 
that is, the need for at least two test vectors to detect a fault.  
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Fig.  4. Coverage with deterministic vectors 
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Fig.  5. Coverage with pseudorandom vectors 

III. DELAY FAULT 
 In logic circuits, failures that cause them to malfunction at 
the desired clock rate are modeled as delay faults. This 
category of faults has received a lot of attention lately, due to 
increasing circuit operation frequencies. This section will 
present an overview of existing delay fault models, and will 
review trends and recent research that gives an indication of 
which fault model to use.  

3.1. Delay Fault Testing 
The basic hardware model for delay fault testing was 

presented in [11], and it is reproduced in Figure 6.  
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Fig.  6. Hardware model with clock timings 
 
For any circuit, the maximum clock rate is determined by the 
propagation delays of the combinational logic between latches. 
During testing for delay faults, two test clocks C1 and C2 are 
used. The period of test clocks Tt is longer than Tc (the system 
clock). The activation of the output clock C2 must lag the 
activation of the input clock C1 by at least DPmax time units 
(the maximum combinational delay). It is important to note 
that delay faults do not alter the logic function. Test for stuck-
at faults are therefore inadequate for detecting delay faults. 
Two-pattern test vectors are needed for detection. In the figure 
above, V1 is the initialization vector, applied at time t0. V2, 
the propagation vector is applied at time t1. The outputs are 
sampled at time t2, and (t2-t1) is the rated clock interval Tc. It 
is almost impossible to exhaustively test for delay faults using 
the simple method outlined above, as for a circuit with n 
inputs, the total number of patterns required is 2n(2n-1). So, 
fault models need to be used for testing delay faults. 

3.2. Delay Fault Models 
 There are five important delay fault models: transition, gate 
delay, path delay, line delay, and segment.  Each of these 
models is described briefly in this section. 

3.2.1. Transition Fault Model: This fault model [12, 13] 
models a defect that causes a delay in the rising of falling 
transitions at the inputs and outputs of gates. There are two 
types of transition faults – slow-to-rise and slow-to-fall. 
However, this model assumes the presence of a large gate 
delay defect, which is not a reasonable assumption in today’s 
technologies [14]. 
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3.2.2. Gate Delay Fault Model: This model assumes that 
delays through logic gates are known with some precision 
[15]. An important consideration in using this model is to 
specify the size of the gate delay fault detected by a test T. 
Much investigation has been done to find the minimum fault 
size at a fault site [16] – [18], so that the test T at the fault site 
is guaranteed to detect any fault at that site with a magnitude 
greater than the minimum fault size. 

3.2.3. Path Delay Fault Model: This was first proposed by 
Smith in [19]. In this model, any path with a total delay 
exceeding the system clock interval is said to have a path delay 
fault. This model is proven to be highly effective in covering 
delay faults, but has a serious limitation because the number of 
paths to be tested is inordinately large for most practical 
circuits. There have been research efforts to determine a subset 
of the total number of paths to be tested [20] – [24], while 
maintaining the accuracy of fault modeling at this level.  

3.2.4. Line Delay Fault Model: This model was proposed to 
overcome the limitation associated with the path delay fault 
model.  The assumption here is that the delays of all gates are 
not reduced below their nominal values. The number of faults 
in the circuit is limited to the twice the number of lines, and 
the longest structural paths are targeted. This model 
overcomes the drawback of transition and gate delay fault 
models; the latter do not model the distributed delay defects 
along the target path. 

3.2.5. Segment Delay Fault Model: This model, proposed in 
[25], seeks to combine the advantages and remove the 
limitations of classical delay fault models. The length of the 
segment L can be as small as 1, or as large as the maximum 
logic depth. In the former case, this fault model would reduce 
to transition fault model, and in the latter, it would expand to 
the path delay fault model. But, like its counterparts, namely 
transition, gate, and line delay fault models, its effectiveness is 
not proven. 

TABLE II (REPRODUCED FROM [11]) 
COMPARISON OF DIFFERENT FAULT MODELS 

 
FAULT MODELS ADVANTAGES LIMITATIONS 
Gate Delay All gates can be 

modeled 
 

Distributed failures not 
considered 
Exact defect size not 
possible 

Transition Easy to model all gates 
 

Distributed failures not 
considered 

Path Delay Distributed failures are 
considered 
 

Impossible to 
enumerate all possible 
paths 

Line Delay All gates are modeled 
Distributed failures are 
considered 
Better coverage metric 

Existence of non-robust 
test 
May fail for some 
shorter paths 
 

Segment Delay Considers general delay 
defect from spot to 
distributed defect 

Longest delay path may 
not be tested 
 

 
This section described delay faults in combinational circuits. 
For sequential circuits, the considerations are similar, and they 
are described in [26]. 

3.3. Effects of Scaling on Circuit Delays 
 Figure 7 shows the effects of scaling on circuit delays. This 
is reproduced from Page 50 of [14]. 
 
 
 
 
 
 
 
 
 
 
 
  
 
  

Fig.  7. Effects on scaling on circuit delays 
 

This clearly shows the need for path delay testing, since the 
wire delay dominates gate delays with the progress of 
technology. Still, there is a big inherent problem associated 
with path delay testing, that is, the number of paths can be 
innumerable, and it is difficult to assign relative importance to 
them. 

3.4. More on Path Delay Fault Model 
 In spite of the basic problem of this approach, this is the 
ideal delay fault model. Since its introduction [19], there have 
been many research initiatives aimed at reducing the 
complexity of the problem. Some of them are [20] – [24], [27] 
– [30]. In this section, two methods are outlined, that seem to 
show significant potential in path delay testing. Since they are 
not directly related to fault modeling, they are only discussed 
briefly. 

3.4.1. Adaptive Path Selection: Traditional path delay test 
methodologies use path selection criteria [20] – [24], [29], 
[30]. While selecting paths, generally, long paths are selected 
and short paths are ignored. It is possible that defects appear 
on the short paths, and they escape detection. To overcome 
this, a new approach called adaptive path selection was 
proposed in [31], where the test process is divided into two 
stages, of which the first stage is testing using traditional 
selection criteria.  The idea is to synthesize a new set of paths 
to be tested using the information of late signals from the first 
test stage. This selection method makes the path delay test 
more complete. 

3.4.2. Stuck-at test generation: In [32], a test generation 
method for non-robust path delay faults was proposed, which 
used stuck-at fault test generation algorithms. As such 
algorithms are highly evolved; using them to test path delay 
faults would be very effective. Although this was investigated 
before [23], [33], there were significant disadvantages, which 
were overcome in [32]. The given combinational circuit is 
transformed into a circuit called a partial leaf dag, after which 
stuck-at fault test generation is applied to it. Each vector is 
transformed into a vector pair as a non-robust two-pattern test 
for the corresponding path delay fault in the original circuit. 
The complexity of the circuit transformation described 
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depends on the target paths for test generation instead of the 
total number of paths. The final result is a compact test set 
with complete fault efficiency, generated in lesser time than a 
commercial test generation tool. 

 

IV. CROSSTALK / COUPLING FAULTS 
Increasing densities of an integrated circuits has led to the 

interconnect lines carrying the logic signal placed physically 
close to each other, increasing the likelihood that logic signal 
and signal changes on one line can affect the logic values on 
other lines. This phenomenon of introducing noise on one wire 
by a signal switching on a neighboring wire is called coupling 
or crosstalk. It is mainly caused by the coupling capacitance 
between the neighboring wires, although other factors like 
mutual inductances and substrate coupling also contribute to 
this kind of transient fault. The four common transient effects 
of the crosstalk fault as shown in Figure 8 are Positive Glitch 
(Gp), Negative Glitch (Gn), Rising edge delay (Dr) and falling 
edge Delay (Dr).  

Fig.  8. Common types of the Crosstalk responses 
 

In static logic, crosstalk faults cause unpredictable delay 
behavior. When neighboring wires are switching in opposite 
directions, delay increases. However, when signals are 
switching in the same direction, the delay decreases [34]-[36].  
In dynamic logic, it can cause erroneous discharge of stored 
precharged values, which results in logic errors [40]. In 
sequential circuit, the cross talk pulses tends to be considered 
as harmless for synchronous sequential circuits, because 
generated crosstalk pulses on data lines can be invalidated with 
enough clock margins, even if the pulse level is high enough to 
exceed the threshold level. In other words, circuits seem to 
operate without any problem if all flip-flops accept steady data 
signal by a slow clock. However, since sequential circuits 
include not only data line but also clock lines and reset line, 
the cross talk pulses caused on clock lines and reset lines can 
lead circuit to erroneous operation if the pulse level is high 
[38]-[41]. 

In sub-micron technology distance between lines has 
decreased and so coupling capacitance and mutual inductance 
between lines will be large. Also rise / fall times keep getting 
faster which causes dv/dt and di/dt values to be large. Due to 
these changes, crosstalk noise between the adjacent 
interconnects has become an important concern, and if not 
taken care of, it could lead to malfunctioning of the circuit.  
Hence, it is becoming increasingly important to model and 
simulate these crosstalk faults while designing high 
performance integrated circuits. 

First, a few models developed for the analysis of crosstalk 
between interconnect lines were based on interconnects 
modeled as transmission lines and used the multi-conductor 
transmission line theory to analyze crosstalk phenomenon 
[42]-[44]. Although these models were quite effective for the 
specific cases, they weren’t quite applicable to VLSI circuits 

because of the complexity of the circuit model and high 
computation time.  Rubio and Kinoshita [45][46] proposed a 
simplified lumped RC model for crosstalk between a pair of 
coupled lines. They analyzed and modeled the crosstalk effects 
manifested as a pulse on the line whose input is held constant. 
Crosstalk speedup and slowdown effects, not addressed in 
these papers, were considered by Breuer [36]. In [35], they 
modeled all CMOS logic gates as equivalent inverters and then 
calculated the output response of crosstalk noise through this 
gate using the transfer function of the equivalent inverter. As 
shown in Figure 9, by using their simple inverter capacitor 
model they were able to model all four transient effects of the 
crosstalk faults. 

 

(a) Speedup (b) Slowdown

(c) Positive Glitch (d) Negative Glitch  
 
Fig.  9. Inverter-Capacitor model for Crosstalk and 4 transient effects 
modeled by it 
 
In [35][36] they proposed a mixed signal ATPG algorithm, 
which used their inverter-capacitor model to  generate tests for 
all four effects of crosstalk fault. The only drawback of this 
simple mixed signal model for the crosstalk fault is that it is 
very computational intensive and takes a long time to simulate 
a small circuit. So, efforts have been made to model crosstalk 
effects at gate level. Figure 10 shows the first ever-logical 
level fault model [45] which models crosstalk coupling 
perturbation effects. It uses a N-stage shift register running at a 
higher speed clock to detect transition occurring on aggressor 
(x) line and puts a glitch pulse on the victim line (y) using 
simple and-or logic. 
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 Fig.  10.  Logical level model for crosstalk pulse fault using shift registers as 
transition detector 
 
The width of the crosstalk pulse is controlled by number of 
stages N of the shift register (which acts as delay elements) 
and the period Tclock of its clock (δ = N*Tclock). 
 Another logic level crosstalk pulse fault is shown in Figure 
11. Here XOR gate is used to detect the transition in the 
aggressor line, i.e., 1->0 or 0->1. Using the logic we can 
generate positive or negative pulse on victim line. The width 
of the cross talk pulse could be controlled by changing the 
number of delays.  

 
Fig.  11.  Logical level model for crosstalk pulse fault using ExOr and 
inverters as transition detector 

 
Becker [47] proposed a HDL level fault model for crosstalk 

which is shown in Figure 12 which can be used to generate 
tests for crosstalk faults in HDL simulators like Cadence’s 
Verifault. Here the wire w1 is assumed to be an aggressor and 
w2 is assumed to be a victim in a crosstalk defect and the 
statement   xrf glitch XRF(w2_out,w1, w2)  is included then 
following  behavior will take place: If there is an event (a 
signal change) on the wire w1, then the internal signal active 
will be set to 1 for the duration of gltime nanoseconds. Note 
that the parameter gltime has a default value of 2-unit time, but 
it can be set for each instance of xrf glitch to different values 
from outside of the module. For instance, if there is an instance 
XRF1 and an instance XRF2, one can set XRF1.gltime to 5 
and XRF2.gltime to 15. After gltime nanoseconds, active is set 
back to 0. The victim signal w2 is forced to assume the value 

of w1 for the time when value of active is 1. The last statement 
in module’s code controls this. 
 
module xrf_glitch(vict_out,aggr,vict); 
input aggr,vict; 
output vict_out; 
parameter gltime=2; 
reg active; 
always @(aggr) 
begin 
 active=1; 
 #(gltime) active=0; 
end 
assign vict_out=(active)? aggr:vict; 
endmodule 
 

Aggressor

Victim Vict Vict_out

Aggr

Victim

 
Fig.  12. Verilog code for crosstalk fault model 

 

V. BRIDGING FAULT 
Bridging fault can be defined as a short between two nodes, 

which are otherwise unconnected. These short can be a strong 
short with a very low resistance or a weak short with a high 
resistance. Thus the bridging faults have quite different 
electrical and logic response, which makes their simulation 
and detection difficult. They can be considered as extension of 
stuck-at models. Like stuck-at fault, these faults are generated 
due to problems in fabrication process such as mask 
misalignment, over-etching, under-etching, etc. It has been 
found that 30–40 % of faults occurring in IC are Bridging 
faults [48] and so they have been most looked for faults after 
stuck-at.  

There are three basic methods which are widely used to 
detect bridging faults, viz. current testing, logic testing, 
propagation delay testing. Among all these current testing has 
been considered to be most efficient in detecting bridging 
faults.[49] 

In normal operation of a CMOS circuit only gates are 
connected to VDD and GND, and the high resistance of these 
gates prevents dc current flow .The conducting path between 
VDD and GND exits for only short time during the switching 
operations. But in the presence of the bridging fault, a 
conducting path between VDD and GND might exist for all 
time, causing large amount of current to flow [50]. So 
presence of excessive current consumption shows the presence 
of the bridging fault.  Current testing method has been 
considered as one of the most robust and effective way to 
detect the bridging fault. But in submicron technology value of 
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leakage current has increased making it difficult to set the 
threshold for fault detection, and so current testing method is 
losing its popularity.  

The presence of one or more bridging fault causes an extra 
delay to be introduced into the circuit, so various propagation 
delay measurement methods could be used to detect bridging 
faults. Gate propagation delay testing, Path propagation delay 
testing and direct electrical simulations are three commonly 
used propagation delay-testing methods to detect the bridging 
faults. There is an accuracy verses speed trade off while 
choosing one of these methods. Direct electrical simulation is 
the most accurate but it takes a large amount of time to 
simulate. While gate and path delay methods are faster, their 
accuracy is limited. The gate delay method [51][52] can be 
used to directly detect particular bridging fault, but path delay 
method detects classes of bridging faults. Also, path delay 
method may detect multiple less severe bridging faults, which 
might go unnoticed in the gate delay technique. 

Wired-Or and Wired-And are the most popular logical fault 
models used to describe bridging fault behavior.  Figure 13 
shows the behavior of these models. Here a resistive short 
between two wires is modeled as either a logical AND for 
wired-AND fault or a logical OR for a wired-OR fault. A and 
B represents the signal sources for the two nets while A’ and 
B’ represents the respective destinations for two nets.  As can 
be seen from table 3, in case of a wired-AND fault if one of 
the sources is ‘0’ then both the destinations would have value 
‘0’. Similarly, in a wired-OR fault if one of the sources were 
‘1’ then both the destinations would have a value ‘1’. A test 
vector t could detect wired-AND fault if and only if either it 
detects A stuck-at-0 and sets B =0, or t detects B stuck-at-0 
and sets A=0.  Similarly, A test vector t could detect wired-OR 
fault if and only if either it detects A stuck-at-1 and sets B =1, 
or  t  detects B stuck-at-1 and sets A=1 [54]. Thus it is possible 
to detect simple bridging fault model with any single stuck-at 
fault test set. [53].   Figure 14 shows simple verilog code, 
which could model Wire-or and Wired behavior of bridging 
fault at HDL level. This simple looking Wired-or and Wired-
And model which were initially developed for bipolar logic 
[53] is no longer valid in present day deep sub micron CMOS 
technology. The nature of the bridge depends upon the 
resistance of the bridge, pull up/down strength of the gate, 
threshold voltage of input of gate and location of the bridge 
[55]. 

A dominant bridging fault model as shown in Figure 15 was 
introduced. Here it is assumed that one of the sources has a 
stronger drive and it determines logic value at both 
destinations. Becker [47] gave a HDL level model for this 
dominant bridging fault which is shown in Figure 16. From 
tables 3 and 4 you could see that dominant bridging fault is 
more difficult to observe and detect than wired-and and wired-
or models. The Wired-And and Wired-or fault can be detected 
by any one of four conditions: 

1. Apply test vector A=0 and B=1 while observing 
both A’ and    B’ 

2. Apply test vector A=1 and B=0 while observing   
both A’ and B’ 

 

 
 
 
 
 
 
module wandor (a_bar,b_bar,a,b,sel); 
input a,b,sel; 
output a_bar,b_bar; 
and G11 (andab,a,b); 
or G1 (orab,a,b); 
 
assign a_bar = (sel)?orab : andab; 
assign b_bar = (sel)?orab : andab; 
endmodule 

 
Fig.  14. Verilog Code for  Wired-AND and Wired-OR fault model. 

 
3. Apply both test vectors, 01 & 10, while observing 

only A’ 
4. Apply both test vectors, 01 & 10, while observing 

only B’ 
But for detection dominant bridging fault we need either 

condition 1 or condition 2. As the detection criteria for the 
dominant bridging fault is a subset of the detection criteria for 
the wired-and/ wired-or bridging fault models, a set of test 
vectors which detect both dominant bridging faults associated 
with a given pair of nets could also detect both wired-and and 
wired-or bridging faults.  

 
Fig.  13. Wired-And and Wired-OR Fault Models 

 
TABLE  III 

LOGICAL BEHAVIOR OF  WIRED-AND/OR MODELS  

In Out Wired-AND Wired-OR 
AB A’B’ A’B’ A’B’ 
00 00 00 00 
01 01 00 11 
10 10 00 11 
11 11 11 11 
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Fig.  15 . Dominant Bridging Fault Models 

 
TABLE  IV 

LOGICAL BEHAVIOR OF DOMINANT MODELS 

 
Although good fault coverage for bridging fault can be 
obtained using the dominant bridging fault model, yet behavior 
of some actual manufacturing defects could not be accurately 

 
module dominant 
(aggr,victim,aggr_out,victim_out); 
input aggr,victim; 
output aggr_out,victim_out; 
 
assign aggr_out = aggr; 
assign victim_out = aggr; 
 
endmodule  

 
Fig.  16. Verilog Code for Dominant Bridging fault model 

 
model by either of the two bridging fault model and they 
escape fault detection with tests developed for bridging faults.  
To take into account of these effects of bridging faults a new 
model diode-And or dominant-And and diode-or or dominant-
Or has been introduced [54]. As shown in Figure 17 this model 
can be seen as a hybrid of the wired-And/wired-or and 
dominant bridging fault models. From table 5 it is noticed that 
the detection of all four possible fault models between a given 
pairs of nets requires both test vectors (01 and 10) as well as 
observation of both destination nets (A’ and B’).  As a result, 
this bridging fault model is more difficult to detect than either 
wire-and/wire-or or the dominant bridging fault models and 
take more time to simulate, as now there are 4 cases to 
simulate. However, detection of the four-dand/dor fault model 
ensures that all wired-And/wired-Or and dominant bridging 
fault models will also be detected for given pair of nets. 

 

 
Fig.  17. Diode-And and Diode-Or Bridging Fault Models 

 
TABLE  V 

LOGICAL BEHAVIOR OF DIODE-AND AND DIODE-OR BRIDGING FAULT MODELS  

In Out A dand 
B 

A dor 
B 

B dand 
A 

B dor 
A 

AB A’B’ A’B’ A’B’ A’B’ A’B’ 
00 00 00 00 00 00 
01 01 00 01 01 11 
10 10 10 11 00 10 
11 11 11 11 11 11 

 

VI.  CONCLUSION 
In this paper, research on contemporary fault models was 

surveyed. There is a wealth of information on this topic, and 
one survey paper cannot cover all pertinent topics. We hope 
that this paper will provide a reference material for someone 
interested in learning more about fault models. For details that 
were omitted here, the reference list would be of use. 
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