
ECE 902 PROJECT REPORT 1

Abstract—A survey paper by Abraham and Fuchs published in

1986 provided a reference for fault models. Fault modeling is still
an active area of research, but to our best knowledge, there is no
paper that surveys research and trends in this field. This paper
describes models for these contemporary faults: stuck-open and
stuck-on CMOS faults, delay faults, bridging faults, and crosstalk
faults. Apart from surveying fault models, we present simulation
results of models that were either developed by us or others, along
with some recommendations.

Index Terms—Fault models, contemporary faults, transistor
faults, delay faults, bridging faults, crosstalk faults.

I. INTRODUCTION

he stuck-at fault model is perhaps the most widely used
model for faults in digital circuits. Although many faults

occur at the transistor-level, the stuck-at model is applied at
the gate-level. In spite of this apparent mismatch, the stuck-at
model has proven to be the de facto standard for fault
modeling. As VLSI technology keeps deepening, the relevance
of this model is brought into question every now and then.
Along with that, new models and testing techniques were
proposed to test faults that were previously ignored. This
paper surveys important research in contemporary faults, with
particular focus on modeling those faults. By using the term
contemporary, we restrict our work to these specific faults:
stuck-open and stuck-on transistor faults (hereafter referred to
as general CMOS faults), bridging faults, and crosstalk faults.
These faults are important in view of their relevance to today’s
level of IC integration. We produced this paper keeping safety-
critical systems in mind; for in such systems, detailed fault
modeling and simulation is necessary.

It is interesting to recognize that present industry focus is
still on testing faults using stuck-at models, so research that
aims to develop gate-level abstractions of faults are important.
Although the stuck-at model does not directly represent many
physical failures in circuits, it has two strong arguments in its
favor: (1) all test generation and fault simulation algorithms
were originally developed for this fault, as it can be thought of
as technology independent and well-suited for logic
simulation, and (2) many faults can be deduced as stuck-at
faults, by observing their behavior. The validity of the stuck-at
model is brought into question time and again, and there are
proponents who call for other testing methods, like circuit
simulation [1], to test faults in CMOS circuits. However,
circuit simulation is computationally expensive and time
consuming, and further disadvantaged by the fact that the
complexity of ICs keeps increasing. Stuck-at fault test
generators are very mature, so, if faults can be reliably

modeled to be processed by such test generators, which would
save a lot of time and effort. Part of our work concentrates on
such research.

II. GENERAL CMOS FAULTS
The stuck-at model can be reliably used in bipolar and

nMOS circuits, since it represents a variety of physical
failures. However, in CMOS circuits, the process irregularities
that result in shorts and opens cannot be represented directly as
stuck-at lines. These faults must certainly be tested for;
otherwise unrealistic fault coverages would be obtained. In this
section, stuck-open and stuck-on faults are described. Two
other types of faults that occur at the transistor level, namely
delay faults and bridging faults are dealt with in separate
sections. The relevance of the stuck-at model to general
CMOS faults was investigated in [2], so this paper will not
address that question in detail. However, some papers that
were published after [2] dealt with this, and we summarize
those results in this section.

2.1. Stuck-open faults
 When a FET is locked in a non-conductive state
independent of the control signal, a stuck-open fault results.
Such cases include missing source and/or drain contacts, and
broken connection lines. Gate-source shorts are also treated as
stuck-opens. In the presence of this fault, a high impedance
node may result, which retains its previous state. The detection
requires at least two vectors, due to the sequential behavior.
The first vector initializes the gate output to a logic value
opposite to that driven by the network, and the second
activates the fault by creating a conducting path between one
of the power supplies and the output of the fault-free gate. This
vector must also propagate the gate output to primary outputs.

2.2. Stuck-on faults
 When a FET is locked in a conductive state independent of
the control signal, a stuck-on fault occurs. These represent
physical failures such as drain-source shorts and errors in
threshold voltage adjustment. In the presence of such a fault, a
signal node can be connected to both power supply and
ground, and it is driven to an intermediate voltage. It is
worthwhile to note that a large percentage of these faults are
undetectable.

2.3. Early research
The problem of applying stuck-at tests to detect stuck-open

and stuck-on faults, was studied in the early 80s, and the
recommendations of such research were summarized in [3]. In
one case, it involves adding extra circuitry to each CMOS gate

Modeling Contemporary Faults
Ravishankar Murugesan and Hemant Savla

T

ECE 902 PROJECT REPORT 2

to model the transistor faults as stuck-ats [4, 5]. This is clearly
infeasible in large VLSI circuits. The other cases, which
required transformations to derive gate-level equivalents of
FCMOS gates [6, 7], had significant drawbacks. In a study
carried out by [8], it was found that many defects in a typical
circuit were undetectable by a logic-level test.

2.4. A Fault Modeling Procedure
 In [9], a fault modeling procedure was described to create a
database with gate level faults. From the point of view of our
survey, this method seems relevant and promising. New fault
models were created to increase the accuracy of fault
modeling. They are (1) Conditional faults: This is a fault that
can be detected only if one of more conditions are satisfied,
and (2) Function Conversion: This occurs when a Boolean
function g is converted into a gate with the Boolean function f
by a physical defect.

2.4.1. General Method: Starting from a switch level
description of a standard cell library, an appropriate fault
model is chosen to model realistic faults. Then, for each cell in
the library, the effect of each fault on that fault model is
determined – this is done using analog simulations. The
observed fault effects are characterized through gate-level
faults. Based on this analysis, a database is created that can be
used to generate a gate-level fault list for a given circuit. By
this process, effective test patterns are generated based on low
level fault model, and using gate-level tools.

2.4.2. Simulation Results: To support the results made in
[9], simulation was carried out for a FCMOS OR gate and a
complex FCMOS gate implementing the function (D + A (B +
C))’. A portion of the simulation results are shown below. For
the OR gate, the same results were obtained as in [2]. In Figure
2, it is seen that a short of A and line 1 can be modeled as
function conversion of OR -> NOR, with input B stuck-at 0.
Others, like B shorted with 1 and 2 shorted with ground
manifest themselves as the primary output stuck-at 1. For the
simulation of the circuit in Figure 3, similar results were
observed. In this circuit, more cases were observed where the
fault effect due to a short could not be observed as the
manifestation of a stuck-at fault. This further proves the reason
to use comprehensive fault models.

2.4.3 Results for Static CMOS: In [9], the influences of all
shorts and opens were determined for gates of the libraries.
Table I summarizes the results for intra-gate shorts and opens
in the static CMOS library. The table clearly shows the need to
use non- classical fault models to reflect complex fault effects.
For systems with safety critical applications, such
comprehensive testing is necessary to assure quality of service.

Fig. 1. CMOS OR gate. Lines 1 and 2 denote lines that were shorted in
different combinations with the inputs.

Fig. 2. Some simulation results of CMOS OR gate. The top two waveforms
denote inputs A and B. The next waveform denotes the correct output. The
next denotes the output when A is shorted with 1. The next two are the
outputs (Z stuck-at 1) when 2 is shorted with the ground, and when B is
shorted with 2.

Fig. 3. Complex gate (D + A (B + C))’. Lines 1, 2, and 3 denote lines that
were shorted in different combinations with the inputs.

TABLE I

ECE 902 PROJECT REPORT 3

RESULTS FOR STATIC CMOS

Fault Coverage (%)
Model Shorts Opens Total

Stuck-at 78.3 - 46.2
Transition - 66.7 26.5
Conditional
transition

- 33.3 13.2

Function 5.8 - 2.6
Conditional
function

11.6 - 6.8

Bridging
“unknown”

4.3 - 3.4

2.5. Test Vector Generation
 An interesting result was reported in [10]. This is presented
in Figures 4 and 5. They found that for stuck-open faults, test
sequences generated in pseudorandom fashion give a better
indirect coverage than deterministic ones. This is because the
former is longer, and hence has a greater probability of
matching the condition required for stuck-open fault detection,
that is, the need for at least two test vectors to detect a fault.

Deterministic

0

20

40

60

80

100

120

0 25 50 75 100
Number of test vectors

C
ov

er
ag

e

Stuck-open (bottom line)
Stuck-at (top line)

Fig. 4. Coverage with deterministic vectors

Pseudorandom

0

20

40

60

80

100

0 2500 5000 7500 10000 12500 15000

Number of test vectors

C
ov

er
ag

e

Stuck-open (bottom line)
Stuck-at (top line)

Fig. 5. Coverage with pseudorandom vectors

III. DELAY FAULT
 In logic circuits, failures that cause them to malfunction at
the desired clock rate are modeled as delay faults. This
category of faults has received a lot of attention lately, due to
increasing circuit operation frequencies. This section will
present an overview of existing delay fault models, and will
review trends and recent research that gives an indication of
which fault model to use.

3.1. Delay Fault Testing
The basic hardware model for delay fault testing was

presented in [11], and it is reproduced in Figure 6.

1

0

0
1

0

0

1
1

Input
Latch Combinational Logic Output

Latch

Tt

Tc

V2 V1

Clock C1

 Clock C2
 t0

V1 is loaded V2 is loaded

t1 t2

 Output is sampled

C1 C2

Fig. 6. Hardware model with clock timings

For any circuit, the maximum clock rate is determined by the
propagation delays of the combinational logic between latches.
During testing for delay faults, two test clocks C1 and C2 are
used. The period of test clocks Tt is longer than Tc (the system
clock). The activation of the output clock C2 must lag the
activation of the input clock C1 by at least DPmax time units
(the maximum combinational delay). It is important to note
that delay faults do not alter the logic function. Test for stuck-
at faults are therefore inadequate for detecting delay faults.
Two-pattern test vectors are needed for detection. In the figure
above, V1 is the initialization vector, applied at time t0. V2,
the propagation vector is applied at time t1. The outputs are
sampled at time t2, and (t2-t1) is the rated clock interval Tc. It
is almost impossible to exhaustively test for delay faults using
the simple method outlined above, as for a circuit with n
inputs, the total number of patterns required is 2n(2n-1). So,
fault models need to be used for testing delay faults.

3.2. Delay Fault Models
 There are five important delay fault models: transition, gate
delay, path delay, line delay, and segment. Each of these
models is described briefly in this section.

3.2.1. Transition Fault Model: This fault model [12, 13]
models a defect that causes a delay in the rising of falling
transitions at the inputs and outputs of gates. There are two
types of transition faults – slow-to-rise and slow-to-fall.
However, this model assumes the presence of a large gate
delay defect, which is not a reasonable assumption in today’s
technologies [14].

ECE 902 PROJECT REPORT 4

3.2.2. Gate Delay Fault Model: This model assumes that
delays through logic gates are known with some precision
[15]. An important consideration in using this model is to
specify the size of the gate delay fault detected by a test T.
Much investigation has been done to find the minimum fault
size at a fault site [16] – [18], so that the test T at the fault site
is guaranteed to detect any fault at that site with a magnitude
greater than the minimum fault size.

3.2.3. Path Delay Fault Model: This was first proposed by
Smith in [19]. In this model, any path with a total delay
exceeding the system clock interval is said to have a path delay
fault. This model is proven to be highly effective in covering
delay faults, but has a serious limitation because the number of
paths to be tested is inordinately large for most practical
circuits. There have been research efforts to determine a subset
of the total number of paths to be tested [20] – [24], while
maintaining the accuracy of fault modeling at this level.

3.2.4. Line Delay Fault Model: This model was proposed to
overcome the limitation associated with the path delay fault
model. The assumption here is that the delays of all gates are
not reduced below their nominal values. The number of faults
in the circuit is limited to the twice the number of lines, and
the longest structural paths are targeted. This model
overcomes the drawback of transition and gate delay fault
models; the latter do not model the distributed delay defects
along the target path.

3.2.5. Segment Delay Fault Model: This model, proposed in
[25], seeks to combine the advantages and remove the
limitations of classical delay fault models. The length of the
segment L can be as small as 1, or as large as the maximum
logic depth. In the former case, this fault model would reduce
to transition fault model, and in the latter, it would expand to
the path delay fault model. But, like its counterparts, namely
transition, gate, and line delay fault models, its effectiveness is
not proven.

TABLE II (REPRODUCED FROM [11])
COMPARISON OF DIFFERENT FAULT MODELS

FAULT MODELS ADVANTAGES LIMITATIONS
Gate Delay All gates can be

modeled

Distributed failures not
considered
Exact defect size not
possible

Transition Easy to model all gates

Distributed failures not
considered

Path Delay Distributed failures are
considered

Impossible to
enumerate all possible
paths

Line Delay All gates are modeled
Distributed failures are
considered
Better coverage metric

Existence of non-robust
test
May fail for some
shorter paths

Segment Delay Considers general delay
defect from spot to
distributed defect

Longest delay path may
not be tested

This section described delay faults in combinational circuits.
For sequential circuits, the considerations are similar, and they
are described in [26].

3.3. Effects of Scaling on Circuit Delays
 Figure 7 shows the effects of scaling on circuit delays. This
is reproduced from Page 50 of [14].

Fig. 7. Effects on scaling on circuit delays

This clearly shows the need for path delay testing, since the
wire delay dominates gate delays with the progress of
technology. Still, there is a big inherent problem associated
with path delay testing, that is, the number of paths can be
innumerable, and it is difficult to assign relative importance to
them.

3.4. More on Path Delay Fault Model
 In spite of the basic problem of this approach, this is the
ideal delay fault model. Since its introduction [19], there have
been many research initiatives aimed at reducing the
complexity of the problem. Some of them are [20] – [24], [27]
– [30]. In this section, two methods are outlined, that seem to
show significant potential in path delay testing. Since they are
not directly related to fault modeling, they are only discussed
briefly.

3.4.1. Adaptive Path Selection: Traditional path delay test
methodologies use path selection criteria [20] – [24], [29],
[30]. While selecting paths, generally, long paths are selected
and short paths are ignored. It is possible that defects appear
on the short paths, and they escape detection. To overcome
this, a new approach called adaptive path selection was
proposed in [31], where the test process is divided into two
stages, of which the first stage is testing using traditional
selection criteria. The idea is to synthesize a new set of paths
to be tested using the information of late signals from the first
test stage. This selection method makes the path delay test
more complete.

3.4.2. Stuck-at test generation: In [32], a test generation
method for non-robust path delay faults was proposed, which
used stuck-at fault test generation algorithms. As such
algorithms are highly evolved; using them to test path delay
faults would be very effective. Although this was investigated
before [23], [33], there were significant disadvantages, which
were overcome in [32]. The given combinational circuit is
transformed into a circuit called a partial leaf dag, after which
stuck-at fault test generation is applied to it. Each vector is
transformed into a vector pair as a non-robust two-pattern test
for the corresponding path delay fault in the original circuit.
The complexity of the circuit transformation described

Effects of scaling

0

10

20

30

40

50

60

650 500 350 250 180 130 100

Technology (nanometers)

De
la

y
(p

ic
os

ec
on

ds
) Wire delay

Gate delay
Gate + wire

ECE 902 PROJECT REPORT 5

depends on the target paths for test generation instead of the
total number of paths. The final result is a compact test set
with complete fault efficiency, generated in lesser time than a
commercial test generation tool.

IV. CROSSTALK / COUPLING FAULTS
Increasing densities of an integrated circuits has led to the

interconnect lines carrying the logic signal placed physically
close to each other, increasing the likelihood that logic signal
and signal changes on one line can affect the logic values on
other lines. This phenomenon of introducing noise on one wire
by a signal switching on a neighboring wire is called coupling
or crosstalk. It is mainly caused by the coupling capacitance
between the neighboring wires, although other factors like
mutual inductances and substrate coupling also contribute to
this kind of transient fault. The four common transient effects
of the crosstalk fault as shown in Figure 8 are Positive Glitch
(Gp), Negative Glitch (Gn), Rising edge delay (Dr) and falling
edge Delay (Dr).

Fig. 8. Common types of the Crosstalk responses

In static logic, crosstalk faults cause unpredictable delay
behavior. When neighboring wires are switching in opposite
directions, delay increases. However, when signals are
switching in the same direction, the delay decreases [34]-[36].
In dynamic logic, it can cause erroneous discharge of stored
precharged values, which results in logic errors [40]. In
sequential circuit, the cross talk pulses tends to be considered
as harmless for synchronous sequential circuits, because
generated crosstalk pulses on data lines can be invalidated with
enough clock margins, even if the pulse level is high enough to
exceed the threshold level. In other words, circuits seem to
operate without any problem if all flip-flops accept steady data
signal by a slow clock. However, since sequential circuits
include not only data line but also clock lines and reset line,
the cross talk pulses caused on clock lines and reset lines can
lead circuit to erroneous operation if the pulse level is high
[38]-[41].

In sub-micron technology distance between lines has
decreased and so coupling capacitance and mutual inductance
between lines will be large. Also rise / fall times keep getting
faster which causes dv/dt and di/dt values to be large. Due to
these changes, crosstalk noise between the adjacent
interconnects has become an important concern, and if not
taken care of, it could lead to malfunctioning of the circuit.
Hence, it is becoming increasingly important to model and
simulate these crosstalk faults while designing high
performance integrated circuits.

First, a few models developed for the analysis of crosstalk
between interconnect lines were based on interconnects
modeled as transmission lines and used the multi-conductor
transmission line theory to analyze crosstalk phenomenon
[42]-[44]. Although these models were quite effective for the
specific cases, they weren’t quite applicable to VLSI circuits

because of the complexity of the circuit model and high
computation time. Rubio and Kinoshita [45][46] proposed a
simplified lumped RC model for crosstalk between a pair of
coupled lines. They analyzed and modeled the crosstalk effects
manifested as a pulse on the line whose input is held constant.
Crosstalk speedup and slowdown effects, not addressed in
these papers, were considered by Breuer [36]. In [35], they
modeled all CMOS logic gates as equivalent inverters and then
calculated the output response of crosstalk noise through this
gate using the transfer function of the equivalent inverter. As
shown in Figure 9, by using their simple inverter capacitor
model they were able to model all four transient effects of the
crosstalk faults.

(a) Speedup (b) Slowdown

(c) Positive Glitch (d) Negative Glitch

Fig. 9. Inverter-Capacitor model for Crosstalk and 4 transient effects
modeled by it

In [35][36] they proposed a mixed signal ATPG algorithm,
which used their inverter-capacitor model to generate tests for
all four effects of crosstalk fault. The only drawback of this
simple mixed signal model for the crosstalk fault is that it is
very computational intensive and takes a long time to simulate
a small circuit. So, efforts have been made to model crosstalk
effects at gate level. Figure 10 shows the first ever-logical
level fault model [45] which models crosstalk coupling
perturbation effects. It uses a N-stage shift register running at a
higher speed clock to detect transition occurring on aggressor
(x) line and puts a glitch pulse on the victim line (y) using
simple and-or logic.

ECE 902 PROJECT REPORT 6

 Fig. 10. Logical level model for crosstalk pulse fault using shift registers as
transition detector

The width of the crosstalk pulse is controlled by number of
stages N of the shift register (which acts as delay elements)
and the period Tclock of its clock (δ = N*Tclock).
 Another logic level crosstalk pulse fault is shown in Figure
11. Here XOR gate is used to detect the transition in the
aggressor line, i.e., 1->0 or 0->1. Using the logic we can
generate positive or negative pulse on victim line. The width
of the cross talk pulse could be controlled by changing the
number of delays.

Fig. 11. Logical level model for crosstalk pulse fault using ExOr and
inverters as transition detector

Becker [47] proposed a HDL level fault model for crosstalk

which is shown in Figure 12 which can be used to generate
tests for crosstalk faults in HDL simulators like Cadence’s
Verifault. Here the wire w1 is assumed to be an aggressor and
w2 is assumed to be a victim in a crosstalk defect and the
statement xrf glitch XRF(w2_out,w1, w2) is included then
following behavior will take place: If there is an event (a
signal change) on the wire w1, then the internal signal active
will be set to 1 for the duration of gltime nanoseconds. Note
that the parameter gltime has a default value of 2-unit time, but
it can be set for each instance of xrf glitch to different values
from outside of the module. For instance, if there is an instance
XRF1 and an instance XRF2, one can set XRF1.gltime to 5
and XRF2.gltime to 15. After gltime nanoseconds, active is set
back to 0. The victim signal w2 is forced to assume the value

of w1 for the time when value of active is 1. The last statement
in module’s code controls this.

module xrf_glitch(vict_out,aggr,vict);
input aggr,vict;
output vict_out;
parameter gltime=2;
reg active;
always @(aggr)
begin
 active=1;
 #(gltime) active=0;
end
assign vict_out=(active)? aggr:vict;
endmodule

Aggressor

Victim Vict Vict_out

Aggr

Victim

Fig. 12. Verilog code for crosstalk fault model

V. BRIDGING FAULT
Bridging fault can be defined as a short between two nodes,

which are otherwise unconnected. These short can be a strong
short with a very low resistance or a weak short with a high
resistance. Thus the bridging faults have quite different
electrical and logic response, which makes their simulation
and detection difficult. They can be considered as extension of
stuck-at models. Like stuck-at fault, these faults are generated
due to problems in fabrication process such as mask
misalignment, over-etching, under-etching, etc. It has been
found that 30–40 % of faults occurring in IC are Bridging
faults [48] and so they have been most looked for faults after
stuck-at.

There are three basic methods which are widely used to
detect bridging faults, viz. current testing, logic testing,
propagation delay testing. Among all these current testing has
been considered to be most efficient in detecting bridging
faults.[49]

In normal operation of a CMOS circuit only gates are
connected to VDD and GND, and the high resistance of these
gates prevents dc current flow .The conducting path between
VDD and GND exits for only short time during the switching
operations. But in the presence of the bridging fault, a
conducting path between VDD and GND might exist for all
time, causing large amount of current to flow [50]. So
presence of excessive current consumption shows the presence
of the bridging fault. Current testing method has been
considered as one of the most robust and effective way to
detect the bridging fault. But in submicron technology value of

ECE 902 PROJECT REPORT 7

leakage current has increased making it difficult to set the
threshold for fault detection, and so current testing method is
losing its popularity.

The presence of one or more bridging fault causes an extra
delay to be introduced into the circuit, so various propagation
delay measurement methods could be used to detect bridging
faults. Gate propagation delay testing, Path propagation delay
testing and direct electrical simulations are three commonly
used propagation delay-testing methods to detect the bridging
faults. There is an accuracy verses speed trade off while
choosing one of these methods. Direct electrical simulation is
the most accurate but it takes a large amount of time to
simulate. While gate and path delay methods are faster, their
accuracy is limited. The gate delay method [51][52] can be
used to directly detect particular bridging fault, but path delay
method detects classes of bridging faults. Also, path delay
method may detect multiple less severe bridging faults, which
might go unnoticed in the gate delay technique.

Wired-Or and Wired-And are the most popular logical fault
models used to describe bridging fault behavior. Figure 13
shows the behavior of these models. Here a resistive short
between two wires is modeled as either a logical AND for
wired-AND fault or a logical OR for a wired-OR fault. A and
B represents the signal sources for the two nets while A’ and
B’ represents the respective destinations for two nets. As can
be seen from table 3, in case of a wired-AND fault if one of
the sources is ‘0’ then both the destinations would have value
‘0’. Similarly, in a wired-OR fault if one of the sources were
‘1’ then both the destinations would have a value ‘1’. A test
vector t could detect wired-AND fault if and only if either it
detects A stuck-at-0 and sets B =0, or t detects B stuck-at-0
and sets A=0. Similarly, A test vector t could detect wired-OR
fault if and only if either it detects A stuck-at-1 and sets B =1,
or t detects B stuck-at-1 and sets A=1 [54]. Thus it is possible
to detect simple bridging fault model with any single stuck-at
fault test set. [53]. Figure 14 shows simple verilog code,
which could model Wire-or and Wired behavior of bridging
fault at HDL level. This simple looking Wired-or and Wired-
And model which were initially developed for bipolar logic
[53] is no longer valid in present day deep sub micron CMOS
technology. The nature of the bridge depends upon the
resistance of the bridge, pull up/down strength of the gate,
threshold voltage of input of gate and location of the bridge
[55].

A dominant bridging fault model as shown in Figure 15 was
introduced. Here it is assumed that one of the sources has a
stronger drive and it determines logic value at both
destinations. Becker [47] gave a HDL level model for this
dominant bridging fault which is shown in Figure 16. From
tables 3 and 4 you could see that dominant bridging fault is
more difficult to observe and detect than wired-and and wired-
or models. The Wired-And and Wired-or fault can be detected
by any one of four conditions:

1. Apply test vector A=0 and B=1 while observing
both A’ and B’

2. Apply test vector A=1 and B=0 while observing
both A’ and B’

module wandor (a_bar,b_bar,a,b,sel);
input a,b,sel;
output a_bar,b_bar;
and G11 (andab,a,b);
or G1 (orab,a,b);

assign a_bar = (sel)?orab : andab;
assign b_bar = (sel)?orab : andab;
endmodule

Fig. 14. Verilog Code for Wired-AND and Wired-OR fault model.

3. Apply both test vectors, 01 & 10, while observing

only A’
4. Apply both test vectors, 01 & 10, while observing

only B’
But for detection dominant bridging fault we need either

condition 1 or condition 2. As the detection criteria for the
dominant bridging fault is a subset of the detection criteria for
the wired-and/ wired-or bridging fault models, a set of test
vectors which detect both dominant bridging faults associated
with a given pair of nets could also detect both wired-and and
wired-or bridging faults.

Fig. 13. Wired-And and Wired-OR Fault Models

TABLE III

LOGICAL BEHAVIOR OF WIRED-AND/OR MODELS

In Out Wired-AND Wired-OR
AB A’B’ A’B’ A’B’
00 00 00 00
01 01 00 11
10 10 00 11
11 11 11 11

ECE 902 PROJECT REPORT 8

Fig. 15 . Dominant Bridging Fault Models

TABLE IV

LOGICAL BEHAVIOR OF DOMINANT MODELS

Although good fault coverage for bridging fault can be
obtained using the dominant bridging fault model, yet behavior
of some actual manufacturing defects could not be accurately

module dominant
(aggr,victim,aggr_out,victim_out);
input aggr,victim;
output aggr_out,victim_out;

assign aggr_out = aggr;
assign victim_out = aggr;

endmodule

Fig. 16. Verilog Code for Dominant Bridging fault model

model by either of the two bridging fault model and they
escape fault detection with tests developed for bridging faults.
To take into account of these effects of bridging faults a new
model diode-And or dominant-And and diode-or or dominant-
Or has been introduced [54]. As shown in Figure 17 this model
can be seen as a hybrid of the wired-And/wired-or and
dominant bridging fault models. From table 5 it is noticed that
the detection of all four possible fault models between a given
pairs of nets requires both test vectors (01 and 10) as well as
observation of both destination nets (A’ and B’). As a result,
this bridging fault model is more difficult to detect than either
wire-and/wire-or or the dominant bridging fault models and
take more time to simulate, as now there are 4 cases to
simulate. However, detection of the four-dand/dor fault model
ensures that all wired-And/wired-Or and dominant bridging
fault models will also be detected for given pair of nets.

Fig. 17. Diode-And and Diode-Or Bridging Fault Models

TABLE V

LOGICAL BEHAVIOR OF DIODE-AND AND DIODE-OR BRIDGING FAULT MODELS

In Out A dand
B

A dor
B

B dand
A

B dor
A

AB A’B’ A’B’ A’B’ A’B’ A’B’
00 00 00 00 00 00
01 01 00 01 01 11
10 10 10 11 00 10
11 11 11 11 11 11

VI. CONCLUSION
In this paper, research on contemporary fault models was

surveyed. There is a wealth of information on this topic, and
one survey paper cannot cover all pertinent topics. We hope
that this paper will provide a reference material for someone
interested in learning more about fault models. For details that
were omitted here, the reference list would be of use.

VII. ACKNOWLEDGMENT
The authors would like to thank Professor Kewal Saluja of the
Department of Electrical Engineering, UW – Madison, for
valuable suggestions during the course of the project.

REFERENCES

[1] W. Y. Koe and S. F. Midkiff, “Circuit simulation of CMOS faults,”

Southeastcon ’88, IEEE Conference Proceedings, pp. 87-91, 1988.

ECE 902 PROJECT REPORT 9

[2] J. A. Abraham and W. K. Fuchs, “Fault and error models for VLSI,”
Proc. of the IEEE, pp. 639-654, 1986.

[3] B. Ricco, M. Favalli, and P. Olivo, “Comprehensive fault modeling and
simulation in CMOS ICs,” CompEuro ’91, 5th Annual European
Computer Conf. Proc., pp. 778-785, May 1991.

[4] R. L. Wadsack, “Fault modeling and logic simulation of CMOS and
NMOS integrated circuits,” Bell Syst. Tech J., vol. 57, pp. 1449-1474,
1978.

[5] S. Al-Arian and D. Agrawal, “Modeling and testing of CMOS circuits,”
Proc. of IEEE Int. Conf. On Computer Design, pp. 763-769, 1984.

[6] S. Reddy, V. Agrawal, and S. Jain, “A gate level model for CMOS
combinational logic circuits with application to fault detection,” Proc.
of Design Aut. Conf., pp. 504-509, 1984.

[7] C. Lo, H. Nham, and A. Bose, “Algorithms for an advanced fault
simulation system in MOTIS,” IEEE Trans. on CAD, vol. 6, pp. 232-
240, 1987.

[8] C. C. Beh, K. H. Arya, C. E. Radke, and K. E. Torku, “Do stuck fault
models reflect manufacturing defects?,” Proc. IEEE Semiconductor
Test Conf., pp. 35-42, Nov. 1982.

[9] J. Alt and U. Mahlstedt, “Simulation of non-classical faults on the gate
level – Fault modeling,” VLSI Test Symp., pp. 351-354, 1993.

[10] M. Favalli, P. Olivo, M. Damiani, B. Ricco, “Fault simulation of
unconventional faults in CMOS circuits,” IEEE Trans. on Computer
Aided Design of Integrated Circuits and Systems, pp. 677-682, 1991.

[11] A. K. Majhi and V. D. Agrawal, “Delay fault models and coverage,”
Proc. of VLSI Design, pp. 364-369, 1998.

[12] K. T. Cheng, “Transition fault simulation for sequential circuits,” Proc.
International Test Conference, pp. 723-731, Oct. 1992.

[13] J. A. Waicukauski, E. Lindbloom, B. K. Rosen, and V. S. Iyengar,
“Transition fault simulation”, IEEE Design and Test of Computers,
4:32-38, 1987.

[14] R. C. Aitken, “Nanometer technology effects on fault models for IC
testing,” IEEE Computer Magazine, pp. 46-51, 1999.

[15] J. L. Carter, V. S. Iyengar, and B. K. Rosen, “Efficient test coverage
determination for delay faults,” Proc. International Test Conf., pp.
418-427, 1987

[16] A. K. Pramanick and S. M. Reddy, “On the detection of delay faults,”
Proc. 1988 IEEE Int. Test Conf., pp. 845-856, 1988

[17] V. S. Iyengar, B. K. Rosen, and I. Spillinger, “Delay test generation 1 –
Concepts and coverage metrics,” Proc. 1988 IEEE Int. Test Conf., pp.
492-499, 1988

[18] V. S. Iyengar, B. K. Rosen, and J. A. Waicukauski, “ On computing the
sizes of detected delay faults,” IEEE Trans. Computer-Aided Design,
vol. 9, pp. 299-312, 1990

[19] G. L. Smith, “Model for delay faults based upon paths,” Proc. Int. Test
Conf., pp. 342-349, 1985

[20] W. K. Lam, A. Saldanha, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli, “Delay fault coverage, test set size, and performance trade-
offs,” IEEE Trans. on CAD, 14(1): 32-44, 1995

[21] K. T. Cheng and H. Chen, “Delay testing for non-robust untestable
circuits,” Proc. Int. Test Conf., pp. 723-731, 1992

[22] K. T. Cheng and H. C. Chen, “Classification and identification of non-
robust untestable path delay faults,” IEEE Trans. on CAD, 15: 845-
853, 1996

[23] M. A. Gharaybeh, M. L. Bushnell, and V. D. Agrawal, “Classification
and test generation for path-delay faults using single stuck-at fault
tests,” Jour. Electronic Testing: Theory and Applications, 11(1): 55-
67, 1997

[24] M. Sivaraman and A. J. Strojwas, “Primitive path delay fault
identification,” Proc. 10th Int. Conf. on VLSI Design, pp. 95-100, 1997

[25] K. Heragu, J. H. Patel, and V. D. Agrawal, “Segment delay faults: A
new fault model,” Proc. 14th IEEE VLSI Test Symp., pp. 32-39, 1996

[26] T. J. Chakraborty, V. D. Agrawal, and M. L. Bushnell, “Delay fault
models and test generation for random logic sequential circuits,” 29th
ACM/IEEE DAC, pp. 165-172, 1992

[27] P. Uppaluri, I. Pomeranz, and S. M. Reddy, “Test pattern generation for
path delay faults in synchronous sequential circuits using multiple fast
clocks and multiple observation times,” 24th Int. Symp. on Fault
Tolerant Computing, pp. 456-465, 1994

[28] X. Xie and A. Albicki, “New advances in path delay fault testing of
combinational circuits,” VLSI Test Symp., pp. 272-277, 1994.

[29] T. J. Chakraborty and V. D. Agrawal, “Effective path selection for
delay fault testing of sequential circuits,” Proc. Int. Test Conf., pp. 998-
1003, 1998

[30] D. H. Du, S. H. Yen, and S. Ghanta, “On the general false path problem
in timing analysis,” Proc. ACM/IEEE Design Automation Conf., pp.
555-560, 1989

[31] W. B. Jone, W. S. Yeh, C. Yeh, and S. R. Das, “An adaptive path
selection method for delay testing,” IEEE Trans. on Instrumentation
and Measurement, vol. 50, pp. 1109-1118, 2001.

[32] S. Ohtake, K. Ohtani, H. Fujiwari, “A method of test generation for
path delay faults using stuck-at fault test generation algorithms,” Proc.
of Design, Automation and Test in Europe Conference and Exhibition,
pp. 310-315, 2003.

[33] A. Saldanha, R. K. Brayton and A. L. Sangiovanni-Vincentelli,
“Equivalence of robust delay fault and single stuck-fault test
generation,” Proc. of Int. Conf. on Computer-Aided Design, pp. 418-
421, 1992.

[34] Weiyu Chen; Gupta, S.K.; Breuer, M.A.; “Analytic models for crosstalk
delay and pulse analysis under non-ideal inputs” in
Test Conference, 1997. Proceedings., International , 1-6 Nov 1997
Page(s): 809 -818

[35] Weiyu Chen; Gupta, S.K.; Breuer, M.A.; “Test generation in VLSI
circuits for crosstalk noise” in Test Conference, 1998. Proceedings.
International, 18-23 Oct 1998 , Page(s): 641 –650

[36] Wei-Yu Chen; Gupta, S.K.; Breuer, M.A.; “Test generation for
crosstalk-induced delay in integrated circuits”, in Test Conference,
1999. Proceedings. International , 1999, Page(s): 191 –200

[37] Shimizu, K.; Takamura, M.; Shirai, T.; Itazaki, N.; Kinoshita, K.; “Fault
simulation method for crosstalk faults in clock-delayed domino CMOS
circuits”, in The First IEEE International Workshop on Electronic
Design, Test and Applications, 2002. Page(s): 92 –96

[38] Itazaki, N.; Idomoto, Y.; Kinoshita, K.; “A fault simulation method for
crosstalk faults in synchronous sequential circuits”, in Fault Tolerant
Computing, 1996., Proceedings of Annual Symposium on , 25-27 Jun
1996, Page(s): 38 –43

[39] Takahashi, H.; Phadoongsidhi, M.; Higami, Y.; Saluja, K.K.;
Takamatsu, Y.; “Simulation-based diagnosis for crosstalk faults in
sequential circuits” in Test Symposium, 2001. Proceedings. 10th Asian ,
2001, Page(s): 63 –68

[40] Keller, K.J.; Takahashi, H.; Saluja, K.K.; Takamatsu, Y.; “On reducing
the target fault list of crosstalk-induced delay faults in synchronous
sequential circuits”, in Test Conference, 2001. Proceedings.
International , 2001, Page(s): 568 –577.

[41] Keller, K.J.; Takahashi, H.; Le, K.T.; Saluja, K.K.; Takamatsu, Y.;
“Reduction of target fault list for crosstalk-induced delay faults by using
layout constraints” in Test Symposium, 2002. (ATS '02). Proceedings of
the 11th Asian , 2002, Page(s): 242 –247.

[42] Zain, A.E. ; Chowdhury, S.; “An analytical method for finding the
maximum crosstalk in lossless-coupled transmission lines.” In Int’l
Conf. On Computed Aided Design, pp.443-448, 1992

[43] Gordon, C.; Rossele, K.M.; “Estimating Crosstalk in multiconductor
transmission lines”, in IEEE Trans. On Components Packaging and
Manufacturing Technology, Vol 19, pp. , May1996.

[44] Kaupp, R.; “Waveform degradation in VLSI interconnections” in IEEE
Journal of Solid-State Circuits,Vol24, pp. 1150-1153, August 1989.

[45] Rubio, A.; Itazaki, N.; Xu, X.; Kinoshita, K.; “An approach to the
analysis and test of crosstalk faults in digital VLSI circuits”, in Design
Automation. EDAC. Proceedings of the European Conference on , 25-
28 Feb 1991, Page(s): 72 –79

[46] Moll, F.; Rubio, A.; “Methodology of detection of spurious signals in
VLSI circuits”, in European Test Conference, 1993. Proceedings of
ETC 93., Third , 19-22 Apr 1993 Page(s): 491 –496.

[47] Bradford, J.; Delong, H.; Polian, I.; Becker, B.; “Simulating realistic
bridging and crosstalk faults in an industrial setting “ in European Test
Workshop, 2002. Proceedings. The Seventh IEEE , 2002, Page(s): 75 –
80

[48] Shen, J.P.; Maly, W.; Ferguson, F.J; “Inductive fault analysis of MOS
integrated circuits” in IEEE Design & Test, pp 13-26, 1985

[49] Ryan, C.A.; “On the complexity of bridging fault simulation techniques
for CMOS integrated circuits” in ASIC Conference and Exhibit, 1995.,
Proc of 8th Annual IEEE International , 18-22 Sep 1995 Page(s):
160 –163

ECE 902 PROJECT REPORT 10

[50] Nigh, P.; Maly, W.; “Test generation for current testing “, in European
Test Conference, 1989., Proceedings of the 1st , 12-14 Apr 1989
Page(s): 194 –200

[51] Carter, J; Iyenger, V; Rosen, B; “Efficient Test Coverage Determination
for Delay Faults” in Proc. ITC, pp 418-427,1987

[52] Mao, W; Ciletti, M; “A simplified Six-Waveform type method for delay
fault testing” in 26th ACM/IEEE DAC, pp 730-733 1989.

[53] K.C.Y. Mei, “Bridging and Stuck-At faults” IEEE Trans. On computer,
Vol 23, No. 7, pp720-727, 1974

[54] Emmert, J.M.; Stroud, C.E.; Bailey, J.R.; “A new bridging fault model
for more accurate fault behavior” in AUTOTESTCON Proceedings,
2000 IEEE , 2000 Page(s): 481 –485

[55] Favalli, M.; Dalpasso, M.; “Bridging fault modeling and simulation for
deep submicron CMOS Ics”, in Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on , Volume: 21 Issue: 8 , Aug
2002 Page(s): 941 –953

	INTRODUCTION
	General cmos faults
	2.1. Stuck-open faults
	2.2. Stuck-on faults
	2.3. Early research
	2.4. A Fault Modeling Procedure
	2.5. Test Vector Generation

	Delay Fault
	3.1. Delay Fault Testing
	3.2. Delay Fault Models
	3.3. Effects of Scaling on Circuit Delays
	3.4. More on Path Delay Fault Model

	Crosstalk / Coupling faults
	Bridging fault
	VI. 	Conclusion
	References

