Inheritance:

reusing the interface

By itself, the idea of an object is a convenient tool. It allows you to package data and functionality together by concept, so you can represent an appropriate problem-space idea rather than being forced to use the idioms of the underlying machine. These concepts are expressed as fundamental units in the programming language by using the class keyword.

It seems a pity, however, to go to all the trouble to create a class and then be forced to create a brand new one that might have similar functionality. It’s nicer if we can take the existing class, clone it and make additions and modifications to the clone. This is effectively what you get with inheritance, with the exception that if the original class (called the base or super or parent class) is changed, the modified “clone” (called the derived or inherited or sub or child class) also reflects those changes.

(The arrow in the above UML diagram points from the derived class to the base class. As you shall see, there can be more than one derived class.)

A type does more than describe the constraints on a set of objects; it also has a relationship with other types. Two types can have characteristics and behaviors in common, but one type may contain more characteristics than another and may also handle more messages (or handle them differently). Inheritance expresses this similarity between types with the concept of base types and derived types. A base type contains all the characteristics and behaviors that are shared among the types derived from it. You create a base type to represent the core of your ideas about some objects in your system. From the base type, you derive other types to express the different ways that core can be realized.

For example, a trash-recycling machine sorts pieces of trash. The base type is “trash,” and each piece of trash has a weight, a value, and so on and can be shredded, melted, or decomposed. From this, more specific types of trash are derived that may have additional characteristics (a bottle has a color) or behaviors (an aluminum can may be crushed, a steel can is magnetic). In addition, some behaviors may be different (the value of paper depends on its type and condition). Using inheritance, you can build a type hierarchy that expresses the problem you’re trying to solve in terms of its types.

A second example is the classic shape problem, perhaps used in a computer-aided design system or game simulation. The base type is “shape,” and each shape has a size, a color, a position, and so on. Each shape can be drawn, erased, moved, colored, etc. From this, specific types of shapes are derived (inherited): circle, square, triangle, and so on, each of which may have additional characteristics and behaviors. Certain shapes can be flipped, for example. Some behaviors may be different (calculating the area of a shape). The type hierarchy embodies both the similarities and differences between the shapes.

Casting the solution in the same terms as the problem is tremendously beneficial because you don’t need a lot of intermediate models to get from a description of the problem to a description of the solution. With objects, the type hierarchy is the primary model, so you go directly from the description of the system in the real world to the description of the system in code. Indeed, one of the difficulties people have with object-oriented design is that it’s too simple to get from the beginning to the end. A mind trained to look for complex solutions is often stumped by this simplicity at first.

When you inherit from an existing type, you create a new type. This new type contains not only all the members of the existing type (although the private ones are hidden away and inaccessible), but more importantly it duplicates the interface of the base class. That is, all the messages you can send to objects of the base class you can also send to objects of the derived class. Since we know the type of a class by the messages we can send to it, this means that the derived class is the same type as the base class . In the above example, “a circle is a shape.” This type equivalence via inheritance is one of the fundamental gateways in understanding the meaning of object-oriented programming.

Since both the base class and derived class have the same interface, there must be some implementation to go along with that interface. That is, there must be some code to execute when an object receives a particular message. If you simply inherit a class and don’t do anything else, the methods from the base-class interface come right along into the derived class. That means objects of the derived class have not only the same type, they also have the same behavior, which isn’t particularly interesting.

You have two ways to differentiate your new derived class from the original base class. The first is quite straightforward: you simply add brand new functions to the derived class. These new functions are not part of the base class interface. This means that the base class simply didn’t do as much as you wanted it to, so you added more functions. This simple and primitive use for inheritance is, at times, the perfect solution to your problem. However, you should look closely for the possibility that your base class might also need these additional functions. This process of discovery and iteration of your design happens regularly in object-oriented programming.

Although inheritance may sometimes imply that you are going to add new functions to the interface, that’s not necessarily true. The second way to differentiate your new class is to change the behavior of an existing base-class function. This is referred to as overriding that function.

To override a function, you simply create a new definition for the function in the derived class. You’re saying “I’m using the same interface function here, but I want it to do something different for my new type.”

Chapter 5.                          Is-a vs. is-like-a relationships

There’s a certain debate that can occur about inheritance: Should inheritance override only base-class functions (and not add new member functions that aren’t in the base class)? This would mean that the derived type is exactly the same type as the base class since it has exactly the same interface. As a result, you can exactly substitute an object of the derived class for an object of the base class. This can be thought of as pure substitution , and it’s often referred to as the substitution principle . In a sense, this is the ideal way to treat inheritance. We often refer to the relationship between the base class and derived classes in this case as an is-a relationship, because you can say “a circle is a shape.” A test for inheritance is whether you can state the is-a relationship about the classes and have it make sense.

There are times when you must add new interface elements to a derived type, thus extending the interface and creating a new type. The new type can still be substituted for the base type, but the substitution isn’t perfect because your new functions are not accessible from the base type. This can be described as an is-like-a relationship; the new type has the interface of the old type but it also contains other functions, so you can’t really say it’s exactly the same. For example, consider an air conditioner. Suppose your house is wired with all the controls for cooling; that is, it has an interface that allows you to control cooling. Imagine that the air conditioner breaks down and you replace it with a heat pump, which can both heat and cool. The heat pump is-like-an air conditioner, but it can do more. Because the control system of your house is designed only to control cooling, it is restricted to communication with the cooling part of the new object. The interface of the new object has been extended, and the existing system doesn’t know about anything except the original interface.

Of course, once you see this design it becomes clear that the base class “cooling system” is not general enough, and should be renamed to “temperature control system” so that it can also include heating – at which point the substitution principle will work. However, the above diagram is an example of what happens in design and in the real world.

When you see the substitution principle it’s easy to feel like this approach (pure substitution) is the only way to do things, and in fact it is nice if your design works out that way. But you’ll find that there are times when it’s equally clear that you must add new functions to the interface of a derived class. With inspection both cases should be reasonably obvious.

 


 

Interchangeable objects

with polymorphism

When dealing with type hierarchies, you often want to treat an object not as the specific type that it is but instead as its base type. This allows you to write code that doesn’t depend on specific types. In the shape example, functions manipulate generic shapes without respect to whether they’re circles, squares, triangles, and so on. All shapes can be drawn, erased, and moved, so these functions simply send a message to a shape object; they don’t worry about how the object copes with the message.

Such code is unaffected by the addition of new types, and adding new types is the most common way to extend an object-oriented program to handle new situations. For example, you can derive a new subtype of shape called pentagon without modifying the functions that deal only with generic shapes. This ability to extend a program easily by deriving new subtypes is important because it greatly improves designs while reducing the cost of software maintenance.

There’s a problem, however, with attempting to treat derived-type objects as their generic base types (circles as shapes, bicycles as vehicles, cormorants as birds, etc.). If a function is going to tell a generic shape to draw itself, or a generic vehicle to steer, or a generic bird to fly, the compiler cannot know at compile-time precisely what piece of code will be executed. That’s the whole point – when the message is sent, the programmer doesn’t w ant to know what piece of code will be executed; the draw function can be applied equally to a circle, square, or triangle, and the object will execute the proper code depending on its specific type. If you don’t have to know what piece of code will be executed, then when you add a new subtype, the code it executes can be different without changes to the function call. Therefore, the compiler cannot know precisely what piece of code is executed, so what does it do? For example, in the following diagram the BirdController object just works with generic Bird objects, and does not know what exact type they are. This is convenient from BirdController’s perspective, because it doesn’t have to write special code to determine the exact type of Bird it’s working with, or that Bird’s behavior. So how does it happen that, when fly( ) is called while ignoring the specific type of Bird, the right behavior will occur?

The answer is the primary twist in object-oriented programming: The compiler cannot make a function call in the traditional sense. The function call generated by a non-OOP compiler causes what is called early binding , a term you may not have heard before because you’ve never thought about it any other way. It means the compiler generates a call to a specific function name, and the linker resolves this call to the absolute address of the code to be executed. In OOP, the program cannot determine the address of the code until run-time, so some other scheme is necessary when a message is sent to a generic object.

To solve the problem, object-oriented languages use the concept of late binding . When you send a message to an object, the code being called isn’t determined until run-time. The compiler does ensure that the function exists and it performs type checking on the arguments and return value (a language where this isn’t true is called weakly typed ), but it doesn’t know the exact code to execute.

To perform late binding, the compiler inserts a special bit of code in lieu of the absolute call. This code calculates the address of the function body, using information stored in the object itself (this process is covered in great detail in Chapter XX). Thus, each object can behave differently according to the contents of that special bit of code. When you send a message to an object, the object actually does figure out what to do with that message.

You state that you want a function to have the flexibility of late-binding properties using the keyword virtual. You don’t need to understand the mechanics of virtual to use it, but without it you can’t do object-oriented programming in C++. In C++, you must remember to add the virtual keyword because by default member functions are not dynamically bound. Virtual functions allow you to express the differences in behavior of classes in the same family. Those differences are what cause polymorphic behavior.

Consider the shape example. The family of classes (all based on the same uniform interface) was diagrammed earlier in the chapter.

To demonstrate polymorphism, we want to write a single piece of code that ignores the specific details of type and talks only to the base class. That code is decoupled from type-specific information, and thus is simpler to write and easier to understand. And, if a new type – a Hexagon, for example – is added through inheritance, the code you write will work just as well for the new type of Shape as it did on the existing types. Thus the program is extensible.

If you write a function in C++ (as you will soon learn how to do):

void doStuff(Shape& s) {
  s.erase();
  // ...
  s.draw();
}

This function speaks to any Shape, so it is independent of the specific type of object it’s drawing and erasing (the ‘ &’ means “take the address of the object that’s passed to doStuff( ), but it’s not important that you understand the details of that right now). If in some other part of the program we use the doStuff( ) function:

Circle c;
Triangle t;
Line l;
doStuff(c);
doStuff(t);
doStuff(l);

The calls to doStuff( ) automatically work right, regardless of the exact type of the object.

This is actually a pretty amazing trick. Consider the line:

doStuff(c);

What’s happening here is that a Circle is being passed into a function that’s expecting a Shape. Since a Circle is a Shape it can be treated as one by doStuff( ). That is, any message that doStuff( ) can send to a Shape, a Circle can accept. So it is a completely safe and logical thing to do.

We call this process of treating a derived type as though it were its base type upcasting. The name cast is used in the sense of casting into a mold and the up comes from the way the inheritance diagram is typically arranged, with the base type at the top and the derived classes fanning out downward. Thus, casting to a base type is moving up the inheritance diagram: “upcasting.”

An object-oriented program contains some upcasting somewhere, because that’s how you decouple yourself from knowing about the exact type you’re working with. Look at the code in doStuff( ):

  s.erase();
  // ...
  s.draw(); 

Notice that it doesn’t say “If you’re a Circle, do this, if you’re a Square, do that, etc.” If you write that kind of code, which checks for all the possible types that a Shape can actually be, it’s messy and you need to change it every time you add a new kind of Shape. Here, you just say “You’re a shape, I know you can erase( ) yourself, do it and take care of the details correctly.”

What’s amazing about the code in doStuff( ) is that somehow the right thing happens. Calling draw( ) for Circle causes different code to be executed than when calling draw( ) for a Square or a Line, but when the draw( ) message is sent to an anonymous Shape, the correct behavior occurs based on the actual type that the Shape is. This is amazing because, as mentioned earlier, when the C++ compiler is compiling the code for doStuff( ), it cannot know exactly what types it is dealing with. So ordinarily, you’d expect it to end up calling the version of erase( ) and draw( ) for Shape, and not for the specific Circle, Square, or Line. And yet the right thing happens, because of polymorphism. The compiler and run-time system handle the details; all you need to know is that it happens and more importantly how to design with it. If a member function is virtual, then when you send a message to an object, the object will do the right thing, even when upcasting is involved.