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Most existing coronary risk assessment methods are based on baseline data only. The authors compared the
predictive ability of coronary multivariable risk scores based on updated versus baseline risk factors and
investigated the optimal frequency of updating. Data from 16 biennial examinations of 4,962 subjects from the
original Framingham Heart Study (1948—-1978) were used. The predictive ability of three multivariable risk scores
was evaluated through 10-fold cross-validation. The baseline-only multivariable risk score was computed using
baseline values of coronary risk factors applied to a Cox model estimated from baseline data. The two other
approaches relied on updated risk factors and included them in the models estimated from, respectively, baseline
and updated data. All analyses were stratified by sex and age. For 30, 14, and 10 years of follow-up, the predictive
ability of the baseline-only multivariable risk score was substantially poorer than that of the models using updated
risk factors. Between the two latter models, the one estimated from updated data ensured better prediction than
the one estimated from baseline data for 30 years of follow-up among younger subjects only. The results suggest
that coronary risk assessment can be improved by utilizing updated risk factors and that the optimal frequency of
updating may vary across subpopulations.

cohort studies; coronary disease; logistic models; proportional hazards models; risk assessment; risk factors;
validation studies [publication type]

Abbreviation: MRS, multivariable risk score.

Coronary heart disease is the leading cause of death in
North America, making it important to accurately predict the
risk of the disease for clinical, public health, and research
purposes. Several methods for coronary heart disease predic-
tion have been proposed (1-7). These methods allow calcu-
lation of an individual’s coronary multivariable risk score as
a function of his/her values for selected established coronary
heart disease risk factors. Apart from use in making clinical
decisions, the multivariable risk score can be very useful in
research. First, the multivariable risk score can serve as a
confounder score (8) by providing a means of simultaneous

adjustment for the effects of several coronary heart disease
risk factors. This can be especially useful when studying
coronary heart disease in smaller populations, such as
patients with a rare disease (9, 10), where simultaneous
modeling of multiple covariates is often not feasible because
of the limited number of observed events (11). In addition,
the background risk due to conventional coronary heart
disease risk factors can act as an effect modifier for a postu-
lated determinant of coronary heart disease, and then a single
interaction term between the proposed determinant and the
multivariable risk score can provide an efficient alternative
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to modeling multiple interactions with individual risk
factors. Finally, the multivariable risk score can serve as a
surrogate endpoint (12, 13) in studies that are not able to
accrue a sufficient number of the clinical coronary heart
disease events.

Most available risk-scoring methods rely on models built
from initial risk factor values measured at study entry (1-7).
This implies that these values do not change over time or that
the initial measurements are the most relevant. However, at
least some of the coronary risk factors show considerable
intraindividual changes over time, so that the correlation
between their initial and updated values gradually decreases
with increasing follow-up (14, 15). If, in addition, the current
risk depends mainly on recent risk factor values, the prog-
nostic utility of a baseline value will decrease over time,
because of regression dilution bias (16).

Therefore, it may be advantageous to incorporate more
recent risk factor values into the multivariable model for
coronary risk assessment. In fact, a recent coronary risk
model, developed from the Framingham Study by D’ Agos-
tino et al. (17), did use updated risk factor data. In that study,
the method of pooling repeated observations (18) was used
to update risk factors at the beginning of each 2-year
interval.

However, the assumption that updating coronary heart
disease risk factors would improve their predictive utility has
not been systematically evaluated. Although some studies
support the use of updated measurements of such factors as
smoking and serum cholesterol (19-21), others suggest the
opposite (22-28). Moreover, each risk factor may have its
own “optimal” time lag between the measurement and the
outcome (27). This makes it difficult to determine a priori
whether baseline or updated risk factor measurement is pref-
erable for global coronary risk estimation and what is the
optimal frequency of updating, calling for an empirical
investigation.

One novel approach to investigating the use of baseline
versus updated risk factors for coronary heart disease predic-
tion was proposed by Cupples et al. (29), who applied pooled
logistic regression to repeated measures from the
Framingham Heart Study. Pooled logistic regression is a
specific type of the pooling repeated observations technique,
asymptotically equivalent (30) to the Cox regression with
time-dependent covariates (31). Cupples et al. (29)
compared parameter estimates for selected risk factors from
the conventional baseline-only and pooled logistic regres-
sions, but they did not compare the models’ overall predic-
tive ability. In addition, the repeated observations were
treated as independent (29), ignoring within-subject correla-
tions, which could affect statistical inference (32, 33).

We attempted to systematically assess the potential advan-
tages of using the multivariable risk score based on updated,
instead of baseline, risk factors in coronary heart disease
prediction and to establish the optimal frequency of
updating.

MATERIALS AND METHODS
Study population

We used data from the first 30 years of follow-up, 1948—
1978, in the Framingham Heart Study (34), with up to 15
postbaseline biennial examinations per subject. Subjects
with prior coronary heart disease were excluded, as were
those with missing values at both the baseline and second
examinations for systolic blood pressure, daily number of
cigarettes smoked, serum total cholesterol, body mass index,
and glucose intolerance.

If age was reported at least once, missing age values at
other examinations were imputed. Missing postbaseline
values of the other risk factors were replaced with the most
recent available value from the previous 4 years. Otherwise,
the records with missing data were excluded.

Because of the different effects of some risk factors in men
and women and in younger and older subjects (35-38), all
analyses were stratified by sex and baseline age, dichoto-
mized at 28-49 years versus 50-62 years, except when indi-
cated otherwise. The endpoint was the first occurrence of
coronary heart disease, defined as myocardial infarction,
angina pectoris, coronary insufficiency, or coronary heart
disease death (39).

Statistical analysis

Predictors included age, current smoking, systolic blood
pressure, body mass index, glucose intolerance, and serum
total cholesterol. These were selected according to the recent
Framingham scoring systems (3).

To evaluate the optimal time frame for measuring coro-
nary heart disease risk factors for global coronary risk
assessment, we used two approaches: “prognostic” and
“lagged.” In the prognostic approach, only current and/or
subsequent risk factor values were used for coronary heart
disease prediction. In contrast, in the lagged approach, only
risk factor values from the preceding 2 years (current) and
earlier examinations were assessed for their relation to the
development of coronary heart disease at a given examina-
tion. Thus, the prognostic method emulated the traditional
approach to multivariable risk score development and appli-
cation, with the pertinent question being if and how often the
baseline risk factors should be updated. The lagged method
was utilized as an alternative that could help to explain the
results of the prognostic analyses by addressing the question
of how much, if at all, the values of all the risk factors should
be lagged to achieve the optimal association between the
aggregate multivariable risk score and the observed
outcomes.

Prognostic approach: estimation of multivariable models.
Each of the four age/sex strata was analyzed separately.
First, two different Cox proportional hazards multivariable
models were estimated. In both models, the date of the first
coronary heart disease event determined the time to event,
and subjects were censored at the last examination or non-
coronary heart disease death. The baseline-only Cox propor-
tional hazards regression model relied on risk factor
measurements at examination 1 (baseline), and this model
was used for prediction of the first coronary heart disease
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event in the next 30 years. A similar approach was used in
some coronary heart disease cohort studies, where only base-
line measurements were available and used for prediction
(e.g., in the Lipid Research Clinics study (40)). Use of this
model in studies where risk factors are measured repeatedly
implies that either the intraindividual fluctuations in risk
factor levels during follow-up are considered negligible or
the impact of such changes is very small, as postulated for
older men, for example, by Benfante et al. (14). The second
model relied on updated risk factors, represented with time-
dependent covariates (31). Here, coronary heart disease
events in the next 2 years were predicted using the risk
factors from the most recent examination, consistent with the
assumption that the current coronary heart disease risk is
best determined by the recent risk factor values (17, 19-21).

Next, we repeated similar analyses while limiting the
follow-up to 14, 10, and 6 years. Accordingly, each subject
could contribute up to two 14-year, three 10-year, or five 6-
year observation periods, respectively, depending on how
long the subject remained coronary heart disease free. For
example, in the 6-year analysis, examinations 1, 4, 7, 10, and
13 provided “baseline” data for subsequent follow-up
periods. At each baseline, subjects were regrouped into age
strata depending on their current age.

Prognostic approach: model estimation and validation.
To ensure unbiased comparison of the ability of the baseline-
only Cox model and the Cox model with time-dependent
covariates to predict outcomes in an independent sample
from the same study population, we used a 10-fold cross-
validation technique (41). Ten “training” and 10 corre-
sponding “validation” subsets were generated by randomly
dividing the original sample into 10 equally sized subsam-
ples. Next, 10 separate models were fitted, each time using
data from nine of the 10 subsamples (training subset) and
leaving the 10th subsample out (validation subset). The data
in the validation subsets were rearranged according to the
pooling repeated observations technique (18), so that each
subject contributed as many observations as there were 2-
year intervals of his/her actual follow-up.

For each subject s in each validation subset, we first calcu-
lated three types of the multivariable risk score (MRS),
having the general form MRS = XB.x,, where i =1, ..., and k
indexes predictor variables. Each MRS was computed by
first fitting a respective multivariable Cox regression model
to the corresponding training subset and then multiplying the
estimated coefficients (3;,) by the subject’s risk factor values
(x;0). In MRS, throughout the entire follow-up, each subject
was assigned a constant MRS value (MRS, = XZf,x,,)
computed using baseline risk factor values (x,) and param-
eter estimates from the baseline-only model (). Calcula-
tion of MRS, involved linking updated risk factor values
(x;,) with the estimates from the baseline-only model ()
(MRS, = ZB;x;,). Thus, the MRS, scores for an individual
subject changed over time (¢), reflecting within-subject vari-
ation in risk factors (x;,). This simulated a hypothetical study
in which risk factors were measured repeatedly over time,
but the multivariable equation used to link risk factor values
with the probability of outcome was derived from an
external study that relied on baseline values only. Finally,
MRS; used risk factor values updated at each consecutive
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examination (x,,,) and the parameter estimates ([3;) from the
time-dependent Cox model that also relied on updated values
(MRS, = ZB,x;,).

For each of the MRS types, in each of the validation
subsets, the derived MRS was used as a single variable
predicting coronary events in a generalized estimating equa-
tions generalization of the multivariable logistic regression
model, with an order 1 autoregressive correlation structure
of residuals (42) to account for the correlations between
repeated measurements (33, 43). Thus, despite the concep-
tual differences at the model estimation stage between long-
term prediction afforded by the baseline model and short-
term prediction of the updated model, the use of multivari-
able risk scores at the validation stage allowed fair compar-
ison of these methods. Indeed, in each MRS model, the
outcome of an individual subject in each of the 2-year
follow-up intervals was predicted using a model-specific
aggregate score.

For each MRS type, the total cross-validated model devi-
ance was computed by summing up the deviances from the
10 validation subsets. Deviance is calculated as twice the
negative log-likelihood of the data and is a summary
measure of discrepancies between predicted probabilities
and actual outcomes of individual subjects. The validation
was based only on the data not used to estimate the respec-
tive models, so that the cross-validated deviance approxi-
mated the predictive ability of the respective multivariable
risk score in an independent sample from the same popula-
tion (41). To compare the models’ ability to discriminate, in
an independent sample, between subjects who will develop
coronary heart disease during the relevant time period and
those who will not, we calculated the R? statistic (44) and the
c-statistic (45), equivalent to the area under the receiver
operating characteristic curve (46), by pooling results from
the 10 validation subsets.

To assess statistical significance of the difference between
the model-specific values of these statistics, we relied on
bootstrap (47). For each time window, we generated 1,000
bootstrap resamples of the 10 original validation subsamples
and pooled their results to obtain 1,000 model-specific boot-
strap estimates of a given statistic. Next, for each pair of the
MRS models, we calculated 1,000 differences between the
corresponding statistics. Finally, the lower and upper bound-
aries of the bootstrap-based 95 percent confidence intervals
for the difference between the two models were estimated as
the 2.5th and 97.5th percentiles of the observed distribution
of the 1,000 differences. A given difference was considered
statistically significant at the 0.05 level (with two-tailed crit-
ical region) if the bootstrap 95 percent confidence interval
excluded zero.

Lagged approach: estimation and validation of
multivariable models. We compared the predictive ability of
the multivariable risk score based on risk factors measured 2
(most recent), 6, 10, and 20 years prior to outcome ascertain-
ment. For example, with a 20-year lag, the outcomes observed
at examinations 14 and 15 are related to values observed at
examinations 3 and 4, respectively. To enable comparisons
with a 20-year lag, only surviving subjects who were coronary
heart disease free until at least examination 11 were used in
these analyses. Accordingly, the cutoff of 69 years was used to
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TABLE 1. Follow-up and distributions of risk factors at baseline, by age and sex strata, Framingham Heart Study, 1948-1978

Risk factor Men Women
Age category, years 28-49 50-62 28-49 50-62
No. of subjects 1,559 665 1,917 821
Subjects with CHD* events (no. (%))t 479 (30.7) 282 (42.4) 297 (15.5) 268 (32.6)
Follow-up, years (mean (SD*)) 26.4 (5.0) 23.0 (7.6) 28.6 (2.4) 25.6 (6.0)
Total person-years of follow-up 35,678 11,614 47,192 16,624
Age, years (mean (SD)) 39.3 (5.5) 54.7 (3.3) 39.4 (5.4) 54.6 (3.2)
Total serum cholesterol, mg/dl (mean (SD)) 221.6 (43.4) 226.5 (42.2) 214.8 (42.8) 251.3 (46.8)
Systolic BP,* mmHg (mean (SD)) 133.4 (16.5) 142.4 (22.6) 128.2 (18.0) 150.2 (46.8)
Body mass index, kg/m? (mean (SD)) 25.7 (3.5) 26.0 (3.4) 24.6 (4.4) 27.1 (4.9)
Current smoking (no. (%)) 1,069 (68.6) 367 (55.2) 921 (48.0) 210 (25.5)
Cigarettes per day among current smokers (mean (SD)) 22.7 (11.0) 19.9 (10.8) 13.5 (8.6) 11.7 (8.9)
Glucose intolerance (no. (%)) 72 (4.6) 49 (7.4) 47 (2.5) 50 (6.1)

* CHD, coronary heart disease; SD, standard deviation; BP, blood pressure.
1 Each subject was counted only once, even if he/she might have had several CHD events during the follow-up.

stratify by age. Starting from examination 11, each subject
could thus contribute up to five assessments of his/her coro-
nary heart disease status. Four separate, pooled, logistic gener-
alized estimating equations regression models were
developed, each using a different lag. When calculating the
multivariable risk score, we used the risk factor values
observed at the same time as the values used in model estima-
tion. The four models were compared using the same 10-fold
cross-validation procedure with bootstrap-based inference as
for the prognostic approach.

RESULTS

Among the 5,209 subjects available at the baseline exami-
nation, 82 (1.6 percent) were excluded because of preex-
isting coronary heart disease. Those with missing baseline
and examination 2 values for body mass index (n = §; 0.2
percent), cigarette smoking (n = 35; 0.7 percent), and serum
total cholesterol (n = 122; 2.4 percent) were also excluded.
This left 4,962 subjects for the analyses, of whom 1,326
(26.7 percent) experienced a coronary event during the 30-
year follow-up. Across a total of 55,527 examinations, 8
percent of systolic blood pressure values were missing and
had to be imputed from earlier examinations. The percent-
ages that were imputed for the other variables were 22
percent (serum cholesterol), 17 percent (glucose intoler-
ance), 32 percent (current smoking), and 8 percent (body
mass index). Table 1 summarizes the distributions of coro-
nary heart disease events, follow-up duration, and baseline
risk factors for the four age/sex strata.

Table 2 compares the predictive ability of the three prog-
nostic MRS models over the 30-year follow-up period,
according to the cross-validated values of deviance, the c-
statistic (45), and maximum-rescaled R? (44). For each
stratum and each of the three performance indicators, the
next column shows the value of the MRS; model, which
used updated risk factor values for both model estimation
and score calculation. The three last columns show the mean

of the 1,000 bootstrap resample-based differences in the
corresponding statistics between a pair of models, together
with the 95 percent bootstrap-based confidence interval. The
asterisk indicates that a given difference is statistically
significant at the 0.05 level.

MRS; and MRS,, which both used updated risk factor
values, predict outcomes much better than does baseline-
only MRS,, with statistically significant differences in
almost all comparisons (table 2). MRS, and MRS; perform
quite similarly except for younger subjects, where the MRS;
yields lower deviances (table 2). While MRS, and MRS,
also yielded significantly higher values of the c-statistic and
R? than did MRS, the differences were less impressive than
for the deviances, because these two measures of discrimina-
tory ability are generally less sensitive to differences in
predictive power of alternative models than are the deviance-
based measures (48).

Tables 3 and 4 compare alternative models with follow-up
limited to 14 and 10 years, respectively. Both MRS, and
MRS, are definitely superior to MRS, in all four strata, with
statistically significant differences in all cases except c-
statistics and R? for younger women, while the performances
of MRS; and MRS, are very similar.

Different results are obtained when the follow-up is limited
to 6 years (table 5). MRS; and MRS, are still superior to MRS,
among the older subjects in both sexes, but among the younger
subjects the three methods perform similarly.

Table 6 summarizes the results of the lagged approach, with
different lag durations. For younger men, current risk factor
values yield statistically significantly higher R? and c-statistics
than do the values observed 10 or 20 years earlier. For
younger women, current risk factor values perform signifi-
cantly better than do the values lagged by 20 years only. For
older men, the current values yielded better results than did
any of the lagged values, but the differences were not signifi-
cant. In contrast, for older women, 6-year lagging improved
significantly the R? and c-statistics, compared with current
values. In most of these cases, similar differences were
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TABLE 2. Comparison of cross-validated predictive ability between coronary heart disease risk prediction models based on three
types of multivariable risk scores,t by age and sex strata, Framingham Heart Study, 1948-1978

Sex Age group (years) preﬁiiﬁjgr:b%ty . MRS MRS, — MRS, MRS, — MRS, MRS, — MRS, 1
Male 28-49 Deviance 2,461 —331 (381, —280)* —12 (24, -2) —319 (368, —269)*
Male 50-62 Deviance 1,270 —223 (261, -181)* -1 (-14, 10) —223 (259, —182)*
Female 28-49 Deviance 1,686 -318 (-368, —264)* —24 (44, -6)* —295 (—344, —241)*
Female 50-62 Deviance 1,337 -199 (-232, —158)* -2 (-7,3) -197 (-231, -157)*
Male 28-49 c-statistic 072 0.02 (0.00, 0.04) -0.01 (~0.01, 0.00) 0.02 (0.00, 0.04)*
Male 50-62 c-statistic 0.63 0.01 (0.00, 0.03) 0.01 (0.01, 0.02) 0.00 (-0.01, 0.01)
Female 28-49 c-statistic 0.80 0.05 (0.02, 0.08) 0.01 (-0.01, 0.02) 0.04 (0.01, 0.08)*
Female 50-62 c-statistic 0.68 0.09 (0.06, 0.11)* 0.03 (0.02, 0.04) 0.06 (0.03, 0.08)*
Male 28-49 R statistic 0.062 0.009 (~0.001, 0.020) ~0.003 (~0.007, 0.000) 0.013 (0.003, 0.023)*
Male 50-62 R statistic 0.027 0.007 (0.002, 0.011)* 0.003 (0.002, 0.005)* 0.003 (~0.001, 0.008)
Female 28-49 R statistic 0.098 0.034 (0.015, 0.053)* 0.006 (~0.002, 0.014) 0.027 (0.010, 0.045)*
Female 50-62 R statistic 0.044 0.027 (0.018, 0.037)* 0.011 (0.007, 0.015)* 0.016 (0.009, 0.023)*

* p < 0.05 (differences statistically significant with a two-tailed test).

T Multivariable risk score (MRS): MRS, is based on regression coefficients from baseline-only Cox regression model and baseline risk factor values; MRS, is
based on regression coefficients from baseline-only Cox regression model and updated risk factor values; MRS; is based on regression coefficients from time-
dependent Cox regression model and updated risk factor values.

1 Deviance, twice negative log-likelihood, by which lower values indicate better predictive ability; c-statistic, higher values indicate better predictive ability; A?
statistic, maximum-rescaled A2, by which higher values indicate better predictive ability.

§ This column shows the value of the given statistic (measure of predictive ability) for MRS;.

9l Each of columns 5-7 compares two MRS models, with respect to the statistics in the third column, by showing the mean difference between the two models,
across 1,000 bootstrap resamples, and the corresponding 95% bootstrap-based confidence interval.

observed for the corresponding deviances, but they never
reached statistical significance.

When logistic regression, instead of the Cox model, was
used for estimating the models in the training subsets, all the
results were similar (data not shown).

To provide more insight regarding the differences between
risk assessments based on baseline (MRS,) and updated
(MRS;) risk factor values, we include figures 1 and 2, which
present detailed data for a few randomly selected younger
men. Each curve in these figures represents the changes over

TABLE 3. Comparison of cross-validated predictive ability between coronary heart disease risk prediction models based on three
types of multivariable risk scores,t by age and sex strata with 14-year follow-up, Framingham Heart Study, 1948-1978

Measure of

Sex Age group (years) predictive ability+ MRS,§ MRS; — MRS MRS; — MRS, MRS, - MRS,
Male 28-49 Deviance 1,369 —105 (-133, -75)* -1(-7,4) —104 (131, -75)*
Male 50-62 Deviance 2,313 —201 (-233, -166)* -3 (-11,4) —198 (231, —-164)*
Female 28-49 Deviance 647 —47 (75, -16)* 1(-5,8) —48 (75, -17)*
Female 50-62 Deviance 2,326 —206 (243, -171)* -2(-9,5) —205 (241, -170)*
Male 28-49 c-statistic 0.72 0.02 (0.01, 0.04)* 0.00 (-0.01, 0.00) 0.03 (0.01, 0.05)*
Male 50-62 c-statistic 0.63 0.03 (0.02, 0.05)* 0.01 (0.00, 0.02)* 0.02 (0.01, 0.04)*
Female 28-49 c-statistic 0.78 0.01 (-0.02, 0.04) 0.00 (-0.01, 0.02) 0.01 (-0.02, 0.04)
Female 50-62 c-statistic 0.66 0.03 (0.01, 0.04)* 0.00 (-0.01, 0.01) 0.03 (0.02, 0.05)*
Male 28-49 R? statistic 0.064 0.017 (0.008, 0.027)* —0.002 (-0.005, 0.000) 0.020 (0.010, 0.030)*
Male 50-62 R? statistic 0.026 0.012 (0.007, 0.018)* 0.004 (0.002, 0.006)* 0.008 (0.003, 0.013)*
Female 28-49 R? statistic 0.083 0.001 (-0.016, 0.018) —0.009 (-0.018, 0.000)* 0.010 (-0.009, 0.027)
Female 50-62 R? statistic 0.038 0.011 (0.004, 0.018)* 0.000 (—0.003, 0.003) 0.011 (0.005, 0.018)*

* p < 0.05 (differences statistically significant with a two-tailed test).

1 Multivariable risk score (MRS): MRS, is based on regression coefficients from baseline-only Cox regression model and baseline risk factor values; MRS, is
based on regression coefficients from baseline-only Cox regression model and updated risk factor values; MRS; is based on regression coefficients from time-
dependent Cox regression model and updated risk factor values.

1 Deviance, twice negative log-likelihood, by which lower values indicate better predictive ability; c-statistic, higher values indicate better predictive ability; A?
statistic, maximum-rescaled R?, by which higher values indicate better predictive ability.

§ This column shows the value of the given statistic (measure of predictive ability) for MRS.

9l Each of columns 5-7 compares two MRS models, with respect to the statistics in the third column, by showing the mean difference between the two models,
across 1,000 bootstrap resamples, and the corresponding 95% bootstrap-based confidence interval.
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TABLE 4. Comparison of cross-validated predictive ability between coronary heart disease risk prediction models based on three
types of multivariable risk scores,t by age and sex strata with 10-year follow-up, Framingham Heart Study, 1948-1978

Sex Age group (years) preﬁiiﬁjgr:b(mty . MRS® MRS, — MRS, MRS, — MRS, MRS, — MRS, 1
Male 28-49 Deviance 991 —51 (~80, —29)* 1(-5,7) 55 (81, —30)*
Male 50-62 Deviance 2,667 —187 (-221, ~155)* -3(-8,2) —184 (215, —152)*
Female 28-49 Deviance 448 -32 (49, —14)* -1 (=10, 6) —31 (-48, —14)*
Female 50-62 Deviance 2,468 -203 (235, —166)* -2(-7,3) ~201 (233, —163)*
Male 28-49 c-statistic 0.72 0.02 (0.00, 0.04) ~0.01 (-0.01, 0.00) 0.02 (0.00, 0.04)
Male 50-62 c-statistic 0.63 0.01 (0.00, 0.03) 0.01 (0.01, 0.02)* 0.00 (~0.01, 0.01)
Female 28-49 c-statistic 0.80 0.05 (0.02, 0.08)* 0.01 (~0.01, 0.02) 0.04 (0.01, 0.08)*
Female 50-62 c-statistic 0.68 0.04 (0.02, 0.05)* 0.00 (0.00, 0.01) 0.03 (0.02, 0.05)*
Male 28-49 R statistic 0.062 0.009 (~0.001, 0.020) ~0.003 (~0.007, 0.000) 0.013 (0.003, 0.023)*
Male 50-62 R statistic 0.027 0.007 (0.002, 0.011)* 0.003 (0.002, 0.005)* 0.003 (~0.001, 0.008)
Female 28-49 R statistic 0.098 0.034 (0.015, 0.053)* 0.006 (~0.002, 0.014) 0.027 (0.001, 0.045)*
Female 50-62 FP statistic 0.044 0.017 (0.011, 0.023)* 0.001(-0.001, 0.004) 0.016 (0.010, 0.022)*

* p < 0.05 (differences statistically significant with a two-tailed test).

T Multivariable risk score (MRS): MRS, is based on regression coefficients from baseline-only Cox regression model and baseline risk factor values; MRS, is
based on regression coefficients from baseline-only Cox regression model and updated risk factor values; MRS; is based on regression coefficients from time-
dependent Cox regression model and updated risk factor values.

1 Deviance, twice negative log-likelihood, by which lower values indicate better predictive ability; c-statistic, higher values indicate better predictive ability; A?
statistic, maximum-rescaled A2, by which higher values indicate better predictive ability.

§ This column shows the value of the given statistic (measure of predictive ability) for MRS;.

9l Each of columns 5-7 compares two MRS models, with respect to the statistics in the third column, by showing the mean difference between the two models,
across 1,000 bootstrap resamples, and the corresponding 95% bootstrap-based confidence interval.

time in the 2-year probability of a coronary heart disease
event, estimated by MRS;, for a particular subject. Figure 1
shows three subjects who did not develop coronary heart
disease during the follow-up, and figure 2 shows three
subjects who did. Although in both groups there is a gradual

increase in coronary heart disease risk over time, the changes
are not strictly monotonic and show between- as well as
within-subject variability, reflecting different individual
trajectories and their fluctuations over time. The increasing
trend reflects the effect of aging on coronary heart disease

TABLE 5. Comparison of cross-validated predictive ability between coronary heart disease risk prediction models based on three
types of multivariable risk scores,t by age and sex strata with 6-year follow-up, Framingham Heart Study, 1948-1978

Sex Age group (years) pre"é'iif}jgr:b‘;{ty ;MRS MRS, — MRS, 1] MRS, — MRS, MRS, — MRS, 1]
Male 28-49 Deviance 719 -9 (22, 5) 0(-7,5) -8 (-21, 5)
Male 50-62 Deviance 2,754 —41 (=59, —22)* 0(-3,3) —41 (-60, —23)*
Female 28-49 Deviance 313 0(-9, 8) 1(-4,6) -1 (-8, 6)
Female 50-62 Deviance 2,493 —46 (—67, —22)* 0(—4,3) —46 (67, —22)*
Male 28-49 c-statistic 0.66 —0.02 (-0.04, 0.01) —0.01 (-0.03, 0.01) —0.01 (-0.03, 0.01)
Male 50-62 c-statistic 0.64 0.00 (-0.01, 0.01) 0.00 (-0.01, 0.00) 0.00 (-0.01, 0.01)
Female 28-49 c-statistic 0.75 0.01 (-0.03, 0.06) 0.00 (-0.03, 0.02) 0.02 (-0.02, 0.05)
Female 50-62 c-statistic 0.69 0.00 (-0.01, 0.01) 0.00 (0.00, 0.00) 0.00 (-0.01, 0.01)
Male 28-49 R? statistic 0.029 —0.009 (-0.017, —0.001)* —0.003 (—0.008, 0.001) —0.006 (—0.014, 0.002)
Male 50-62 R? statistic 0.033 —0.002 (-0.007, 0.002) —0.002 (—0.003, 0.000) —0.001 (—0.005, 0.004)
Female 28-49 R? statistic 0.064 0.006 (—0.004, 0.018) —0.001 (-0.006, 0.004) 0.007 (-0.003, 0.018)
Female 50-62 R? statistic 0.047 0.000 (—0.005, 0.005) 0.000 (—0.001, 0.002) —0.001 (-0.005,0.004)

* p < 0.05 (differences statistically significant with a two-tailed test).

T Multivariable risk score (MRS): MRS, is based on regression coefficients from baseline-only Cox regression model and baseline risk factor values; MRS, is
based on regression coefficients from baseline-only Cox regression model and updated risk factor values; MRS; is based on regression coefficients from time-
dependent Cox regression model and updated risk factor values.

1 Deviance, twice negative log-likelihood, by which lower values indicate better predictive ability; c-statistic, higher values indicate better predictive ability; A?
statistic, maximum-rescaled A2, by which higher values indicate better predictive ability.

§ This column shows the value of the given statistic (measure of predictive ability) for MRS;.

9l Each of columns 5-7 compares two MRS models, with respect to the statistics in the third column, by showing the mean difference between the two models,
across 1,000 bootstrap resamples, and the corresponding 95% bootstrap-based confidence interval.
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TABLE 6. Comparison of cross-validated predictive ability between coronary heart disease risk prediction models based on four
types of retrospectively based multivariable risk scores, by age and sex strata, Framingham Heart Study, 1948-1978

Time lag between risk factor measurement and coronary heart disease event
Sex Age group (years) M_egsure ‘.)T

predictive abilityt  Gyprentt Current — 6 years§ Current — 10 years§ Current — 20 years§
Male 49-69 Deviance 710 -2 (-13,9) -10(-22, 1) -9 (-21, 3)
Male 70-92 Deviance 338 —4 (-13, 6) —4 (—-15, 6) —4 (-16, 10)
Female 49-69 Deviance 644 4 (-6, 13) 1(-10, 12) —7 (-18,5)
Female 70-92 Deviance 445 5 (-6, 16) 1(-9, 11) 2 (-9, 14)
Male 49-69 c-statistic 0.63 0.00 (-0.03, 0.03) 0.05 (0.02, 0.09)* 0.06 (0.02, 0.09)*
Male 70-92 c-statistic 0.57 0.03 (-0.01, 0.09) 0.05 (-0.01, 0.11) 0.05 (-0.01, 0.11)
Female 49-69 c-statistic 0.63 —0.01 (-0.04, 0.02) 0.00 (-0.03, 0.04) 0.06 (0.02, 0.10)*
Female 70-92 c-statistic 0.53 —0.05 (-0.10, —0.01) * 0.00 (-0.04, 0.04) —0.01 (-0.06, 0.05)
Male 49-69 AP statistic 0.024 0.002 (—0.009, 0.015) 0.016 (0.006, 0.030)* 0.015 (0.004, 0.030)*
Male 70-92 AP statistic 0.009 0.007 (-0.001, 0.018) 0.008 (-0.001, 0.020) 0.008 (-0.004, 0.022)
Female 49-69 AP statistic 0.022 —0.005 (-0.015, 0.004) —0.003 (-0.015, 0.009) 0.012 (0.002, 0.024)*
Female 70-92 AP statistic 0.002 —0.009 (-0.018, —0.001)* 0.000 (-0.003, 0.002) 0.000 (—0.004, 0.004)

* p < 0.05 (differences statistically significant with a two-tailed test).

1 Deviance, twice negative log-likelihood, by which lower values indicate better predictive ability; c-statistic, higher values indicate better
predictive ability; A? statistic, maximum-rescaled R?, by which higher values indicate better predictive ability.

1 This column shows the value of the given statistic (measure of predictive ability) for the model based on current values.

§ Each of columns 5-7 compares two multivariable risk score models, with respect to the statistics in the third column, by showing the mean
difference between the two models, across 1,000 bootstrap resamples, and the corresponding 95% bootstrap-based confidence interval.

risk, on which the effects of changes in the other risk factors
are superimposed, leading to increases or decreases in the
estimated risk.

For example, for subject A in figure 1, the coronary heart
disease risk increases in the initial 2 years, then drops
between years 2 and 4, mainly due to simultaneous declines
in systolic blood pressure (from 133 to 112 mmHg), serum
total cholesterol (from 326 to 255 mg/dl), and body mass
index (from 29.4 to 28.2 kg/m?), but later increases steadily
until year 16. Between years 16 and 18, the risk for subject A

decreases considerably as a result of large decreases in
systolic blood pressure (from 121 to 109 mmHg) and, espe-
cially, of cholesterol (from 326 to 266 mg/dl) and body mass
index (from 28.1 to 26.4 kg/m?) and then remains relatively
stable between years 18 and 22. However, a steep increase
occurs at year 24 when the subject develops glucose intoler-
ance. Finally, at year 26, the subject appears to reduce his
risk again by decreasing the cholesterol level from 282 to
232 mg/dl. In contrast, subjects B and C show relatively

0.05
0.045
0.04
0.035
0.03 1
0.025 +
0.02
0.015 4

Estimated 2-Year CHD Risk

0.01 1

0 2 4 6 8 10 12

Length of Follow-Up (years)

FIGURE 1. Plot of estimated 2-year coronary heart disease (CHD) risk over time in three selected subjects who did not develop CHD: subject
A (solid line), subject B (dotted line), and subject C (dashed line), Framingham Heart Study, 1948-1978. Men were aged 28—49 years at baseline.
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14 16 18 20 22 24 26 28

Length of Follow-Up (years)

FIGURE 2. Plot of estimated 2-year coronary heart disease (CHD) risk over time in three selected subjects who developed CHD: subject D
(solid line), subject E (dotted line), and subject F (dashed line), Framingham Heart Study, 1948-1978. Men were aged 28-49 years at baseline.

stable, gradually increasing patterns in their predicted coro-
nary heart disease risk (figure 1).

Figure 2 shows that the three subjects who ultimately
developed coronary heart disease have, on average, less
stable patterns in the estimated risk than the coronary heart
disease-free subjects have in figure 1. For example, for
subject D, the risk declines between years 2 and 6 because of
decreasing systolic blood pressure (from 131 to 114 mmHg)
and cholesterol (from 355 to 320 mg/dl) and then resumes a
rather steady increase until year 24. Between years 24 and
26, the risk increases steeply, reflecting simultaneous
increases in cholesterol (from 259 to 299 mg/dl) and body
mass index (from 21.1 to 23.7 kg/m?). In the following 2
years, subject D develops glucose intolerance, but the overall
risk decreases slightly as he considerably reduces cholesterol
(from 299 to 257 mg/dl) and systolic blood pressure (from
154 to 137 mmHg). Even so, he experiences a coronary heart
disease event in the next 2 years. Interestingly, subject F also
shows an unstable up-and-down pattern of changes in risk
just before the event (figure 2).

Overall, figures 1 and 2 show that the updated scores of
MRS; may reflect some important within-individual changes
in risk over time. In contrast, the MRS, which uses baseline
values only, is by definition unable to capture such changes.

DISCUSSION

We have compared the abilities of three alternative multi-
variable risk score systems to predict development of coro-
nary heart disease in different age- and sex-specific
subgroups of the Framingham population. Our results indi-
cate that assessment of short-term coronary risk can be
improved by using updated risk factor values for calculation
of the multivariable risk score regardless of whether the
underlying equation was estimated from the updated or base-
line risk factor data. In our analyses, most of these improve-

ments were statistically significant, and their clinical
relevance was reflected by the fact that, for example, R? and
deviance often improved by more than 30 percent and 15
percent, respectively, relative to the baseline-only MRS;.
Furthermore, the differences in deviances often exceeded
100, indicating a very important improvement in prediction
(41). However, the optimal frequency and utility of updating
may vary across populations.

We have investigated the issue of optimal frequency for
updating using two approaches. Despite only partial overlap
between the younger subgroups in the prognostic (25-50
years at baseline) and lagged approaches (49—69 years at the
time of coronary heart disease outcome), the results are
generally consistent. Both approaches suggest that, while
frequent (every 2 years) updating of risk factors improves
prediction when compared with rare updating (every 10 or
more years) in all the subgroups, updating every 2 years may
not be preferable to updating every 6 years.

Our results corroborate previous findings that changes in
cholesterol, blood pressure, and smoking lead to changes in
coronary risk within the next 2-5 years (19-21) and that
these risk factors show considerable intraindividual fluctua-
tions over time (14, 15, 49-51). However, in contrast to
previous studies, our analyses allow us to directly quantify
the benefits derived from the systematic updating of the
global multivariable risk score. Still, it is not immediately
clear from our analyses which risk factor’s being updated
benefited the models’ predictive ability the most, as the
observed differences between the two multivariable Cox
models (baseline only vs. time dependent) represent the net
result of several jointly acting effects.

Our study has some limitations. Because we used data
from the original Framingham Heart Study (1948-1978), the
temporal generalizability of our prediction models might be
reduced. However, previous validation studies have estab-
lished the reasonably high accuracy of the Framingham
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equations for more recent populations (52), and thus we
expect our methodological conclusions to apply to contem-
porary populations as well. Second, many risk factor values
had to be imputed. Although carrying the last observation
forward makes the comparisons more conservative, we were
still able to demonstrate statistically significant improve-
ments due to using updated rather than baseline risk factor
values. However, that does not mean that the resulting coro-
nary heart disease prediction was optimal. It is quite possible
that each risk factor has its own lag, after which its impact on
coronary heart disease risk is the strongest, and accounting
for such risk factor-specific lags might lead to further
improvements. Yet, we intentionally refrained from
searching for risk factor-specific lags, as both the reliability
of potential findings and the practicability of the resulting
models would be questionable. Indeed, in both research
settings and clinical practice, it is much more practical to
consider the same time frame for all risk factors. In addition,
there could be lag-specific functional forms of the relation
between a coronary risk factor and coronary heart disease
risk, as suggested by Emond and Zareba (53). These
complex issues need to be investigated in future studies.

In spite of these limitations, our findings have practical
implications. First of all, they show that, in clinical practice,
an individual patient’s short-term prognosis could be
improved by relying on the multivariable risk score that uses
recent risk factor values. Second, the updated multivariable
risk score provides a parsimonious means of simultaneous
adjustment (8) for several coronary heart disease risk factors,
which can be advantageous in coronary heart disease studies
of smaller populations (10). Finally, our results suggest that
the multivariable risk score should be updated frequently if it
is used as a surrogate endpoint (12, 13) instead of the clinical
coronary heart disease outcomes.

In conclusion, our analyses suggest that further refinement
of the coronary heart disease prediction models, by
accounting for additional information provided by updated
risk factor values, may offer material benefits. However,
further work is necessary to develop the optimal coronary
heart disease risk scoring systems. Future research should
consider incorporation of the emerging risk factors (54), as
well as a more comprehensive assessment of the role of base-
line values of particular risk factors and their subsequent
changes. We believe that our results may encourage such
further developments, which should ultimately result in
improved prediction and prevention of coronary heart
disease.
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